hdu 2421 (数论)

点击打开链接


分析:

这道题要理解对题目的意思,题目中给出 A 和 B , N = A^B ,如果a1 , a2 , a3 , a4....an为N的因子,则求a1,a2,a3的因子个数的立方和(summing the cube of number of factors of all ais.


  一个大于1的自然数A=a1^p1*a2^p2*...,则 N 的因数个数为(1+p1)*(1+p2)*(1+p3)*...*(1+pn),(0,1..p1)*(0,1p2)*...*(0 , 1 ,pn);

ans = (1^3 + 2^3 + 3^3 +(1 + p1)^3)*(1^3 + 2^3 + 3^3 +(1 + p2)^3) *.....*((1^3 + 2^3 + 3^3 +(1 + pn)^3))

A^B的因子总数(0*B,1*B,.....p1*B) * (0*B, 1*B , ...  ,  p2*B)*.....*(0*B , 1*B , .....  pn*B)

ans = ((1*B)^3 + (2*B)^3 + (3*B)^3 +.....+ (p1*B)^3 ) * ((1*B)^3 + (2*B)^3 + (3*B)^3 +.....+ (p2*B)^3 )* ... *(((1*B)^3 + (2*B)^3 + (3*B)^3 +.....+ (pn*B)^3 ))

。。。。


//公式1^3 + 2^3 +3^3 +.....+ n^3 = n^2*(n+1)^2/4.


#include"stdio.h"
#include"string.h"
int prime[201];
int p[1011];
int cnt;
void fun()
{
	int i,j;
	cnt=0;
	memset(p,0,sizeof(p));
	for(i=2;i<=1010;i++)
	{
		if(p[i]==0)
		{
			for(j=i+i;j<=1010;j+=i)
				p[j]=1;
		}
		if(p[i]==0)prime[cnt++]=i;
	}
}
int main()
{
	int T;
	int i,k,t;
	__int64 A,B,ans;
	fun();
	T=1;
	while(scanf("%I64d%I64d",&A,&B)!=-1)
	{
		ans=1;i=0;
		B%=10007;
		i=0;
		while(A>1&&i<cnt)
		{
			k=0;			
			while(A%prime[i]==0)
			{
				k++;
				A/=prime[i];
			}
			t=(k*B+1)*(k*B+2)/2%10007;
			t=t*t%10007;
			ans=ans*t%10007;
			i++;
		}
		if(A>1)
		{
			t=(B+1)*(B+2)/2%10007;
			t=t*t%10007;
			ans=ans*t%10007;
		}
		printf("Case %d: %I64d\n",T++,ans);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值