这个题是说,有几块地,然后,有M条是无向边,有U条是有向边(只能从某一点到另一点,不能反过来走),出现有向边的情况是出现了时空穿梭,也就是说可以倒回去的那种,所以预处理要处理为负的权值。题上问有没有可能是一直走一直走,穿越之后,能不能看到没出发之前的自己。于是就用到了最短路算法和处理负圈的算法,整体用bellmanford算法就可以解决
#include<stdio.h>
#include<string.h>
#define max 5500
int dis[max];
int n,m,t,u;
int biaoji[max];
#define inf 0x3f3f3f3f
struct node{
int u,v,cost;
}edge[max];
int bellmanford()
{
int i,j;
memset(dis,inf,sizeof(dis)); //初始化所有的数组,让dis【1】=0
dis[1]=0;
for(i=1;i<=n;i++)
{
for(i=1;i<=n;i++)
biaoji[i]=dis[i]; //复制数组,以备后头使用
int chack=0; //纯粹的标记
for(j=1;j<=2*m+u;j++) //松弛操作
{
if(dis[edge[j].u]+edge[j].cost<dis[edge[j].v])
dis[edge[j].v]=dis[edge[j].u]+edge[j].cost;
}
for(int k=1;k<=n;k++)
if(biaoji[k]!=dis[k]) //如果发生松弛,那么各点所存的值一定改变
chack=1;
if(chack==0) //如果没有发生松弛,那么及时跳出,不必进行没有用的循环,节省时间
break;
}
for(i=1;i<=2*m+u;i++)
if(dis[edge[i].u]+edge[i].cost<dis[edge[i].v]) //松弛过一遍之后,再松弛一遍,如果还可以松弛,说明有负圈
return 1;
return 0;
}
int main()
{
int i,o,p,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&u);
for(i=1;i<=2*m+u;i++)
{
if(i<=2*m)
{
scanf("%d%d%d",&o,&p,&j);
edge[i].u=o; //用结构体来存储边的信息
edge[i].v=p;
edge[i].cost=j;
i++;
edge[i].v=o;
edge[i].u=p;
edge[i].cost=j;
}
else
{
scanf("%d%d%d",&o,&p,&j);
edge[i].u=o;
edge[i].v=p;
edge[i].cost=-j; //这就是时空穿梭隧道,所以存成负值
}
}
int s=bellmanford();
if(s) //如果发生了那个负圈,而且dis[edge[i].u]+edge[i].cost<dis[edge[i].v],那么直接输出YES
printf("YES\n");
else
printf("NO\n");
}
return 0;
}