【Python】pandas:计算,统计,比较

pandas是Python的扩展库(第三方库),为Python编程语言提供 高性能、易于使用的数据结构和数据分析工具。

pandas官方文档:User Guide — pandas 2.2.2 documentation

帮助:可使用help(...)查看函数说明文档(若是第三方库的函数,需先导入库)。例如:help(pd.DataFrame),help(pd.crosstab)


Python代码中,导入pandas:

import pandas as pd

使用pandas时,通常涉及numpy,若需要也导入numpy:

import numpy as np


1、算术运算

数值行/列可以进行算术运算(加、减、乘、除、取余、幂等)。

2、与其他行/列进行计算

数值行/列可以与其他数值行/列进行计算。

3、用于计算的函数

(3-1)算术运算的函数:add, radd, sub, pow等

有一些函数可以用于算术运算,也可以将两个DataFrame之间进行计算。

例如(加法):DataFrame.add(self, other, axis='columns', level=None, fill_value=None)

注:参数other:数值、序列(如:列表/字典)、Series、另一个DataFrame。

        参数axis:指定轴。若other是Series默认按索引,若other是列表/字典默认按列。

        参数fill_value:指定NaN的填充内容。

常用算术运算的函数
DataFrame.add(...)
DataFrame.sub(...)
DataFrame.mul(...)
DataFrame.div(...)
DataFrame.truediv(...)
DataFrame.floordiv(...) 除(返回整数)
DataFrame.mod(...) 取余
DataFrame.pow(...)
DataFrame.rsub(...) 减(反向)。不是“3-5”而是“5-3”
DataFrame.rdiv(...) 除(反向)。不是“3/5”而是“5/3”
DataFrame.rmod(...) 取余(反向)。不是“3%5”而是“5%3”
DataFrame.rpow(...)

幂(反向)。不是“3**5”而是“5**3”

DataFrame.abs(...) 取绝对值

 

(3-2)累计计算的函数:cumsum, cummax等

有一些函数可以用于指定轴的累计计算(各位置的数值是按指定轴从位置0到该位置累计计算的数值)。

例如(累计求和):DataFrame.cumsum(self, axis=None, skipna=True, *args, **kwargs)

注:参数axis:指定轴。若axis=0 则各列累计计算,若axis=1 则各行累计计算。

       参数skipna:默认skipna=True 跳过NaN。

常用累计计算的函数
DataFrame.cummax(...) 指定轴,各位置数值是从位置0到该位置的累计最大值
DataFrame.cummin(...) 指定轴,各位置数值是从位置0到该位置的累计最小值
DataFrame.cumsum(...) 指定轴,各位置数值是从位置0到该位置的累计求和
DataFrame.cumprod(...) 指定轴,各位置数值是从位置0到该位置的累计乘积

 (3-3)计算矩阵乘法的函数:dot

dot(self, other: 'AnyArrayLike | DataFrame') -> 'DataFrame | Series'

  • DataFrame.dot(other):DataFrame与另一个DataFrame或Series进行矩阵乘法。
  • 等效于:DataFrame @ other
  • 注:DataFrame和other维度需兼容(即DataFrame的列数和other的行数相同),才能进行矩阵乘法。结果是新DataFrame(原DataFrame的行数,other的列数)。

 DataFrame.columns和other.index需相同,否则报错:ValueError: matrices are not aligned。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yannan20190313

感谢您的支持。祝好心情。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值