机器学习(十九)EM:期望最大算法

1 EM算法简介

最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

未观测变量的学名是“隐变量”(latent variable)。EM算法是常用的估计参数隐变量的利器,它是一种迭代式的方法,其基本思想是:若参数θ已知,则可根据训练数据推断出最优隐变量Z的值(E步);反之,若Z的值已知,则可以方便地对参数θ做极大似然估计(M步)。

于是,以初始值θ0为起点,可迭代执行以下步骤直至收敛:

  • 基于θt推断隐变量Z的期望,记为Zt;
  • 基于已观测变量X和Zt对参数θ做极大似然估计,记为θt+1

2 抛硬币例子

我们现在考虑两个抛硬币的例子:

"给定两个硬币A和B,随机抛掷后正面朝上概率分别记为 p'和'q'。每次随机选择一个硬币并投掷。有以下观察序列:H A H A T B T A T B H B H B T A H B H A T A T A H A H B H A T B,从给定数据估计出'p'和'q'的值"。

我们很容易计算出p:


1531909-f98bf8ca4962052b.png

相似地可以计算出q:


1531909-09e4bff25fc8e0c6.png

这很容易,因为计算未知参数所需的所有信息都是可获得的。但是,如果硬币上的标签(A和B)被隐藏起来,不知道每次投掷哪个硬币。鉴于A和B硬币同样可能被选中,那我们如何估计未知参数'p'和'q'?

我们将尝试通过多次迭代计算来解决问题。在每次迭代中,我们有两个步骤,'E'步骤和'M'步骤。

“E”步骤(期望):

  1. 首先初始化p和q的值(初始猜测)。
  2. 我们不是说掷硬币来自特定的硬币,而是说它以概率为'x'来自硬币A,来自硬币B概率'1-x'。
  3. 计算每枚硬币的正反面期望数量。

“M”步骤(最大化):

  1. 从“E”步骤计算步骤3中每个硬币的正反面期望的对数似然,类似于MLE计算。
  2. 最大似然估计出隐变量,并重新估计p和q的新值
  3. 使用新的p和q值重复“E”步骤,直到它收敛为止。

让我们举一个例子,其中进行了5次实验并且在每次实验中进行了10次抛掷。(使用两个硬币)。


1531909-2cf2d89967b972ed.png

我们从对未知参数进行初始化猜测,假设p = 0.6和q = 0.5。让我们进行第一轮实验。将此观察序列称为'S',我们想要估计观察'S'来自硬币A的可能性是多少,即P(A | S)。回想贝叶斯定理:


1531909-786fb3da655d82d7.png

P(A)是选择硬币A的概率,它是0.5(因此是P(B)),因为我们知道每个硬币具有相同的被选择的概率。P(S|A)是观察的概率,因为它来自硬币A,即使用二项分布,我们推断它是:
1531909-8f651867699d6bf6.png

同样地有,


1531909-580cc85bf5c502a3.png

P(S)是观察序列的概率。由于观察可以来自硬币A或硬币B或两者,因此:
1531909-bb53be174506b77c.png

然后可以得到:
1531909-60b3d7db53176b91.png

将初始猜测的值代入p = 0.6和q = 0.5,得到P(A | S)= 0.45,因此P(B | S)= 1-P(A | S)= 0.55。
1531909-f9802c3519f47956.png

因此,给定观察序列S,它来自硬币A的概率是0.45并且来自硬币B的概率是0.55。因此,来自硬币A正面期望数量 = 5 * 0.45并且反面期望数量= 5 * 0.45,类似地,来自硬币B的正面的期望数量= 5 * 0.55并且反面期望数量= 0.5 * 0.55。对其他四个实验重复相同的期望(E)步骤,我们得到硬币A 正面期望总数= 21.3和反面期望总数= 8.6,类似于硬币B,正面期望总数= 11.7,反面期望总数= 8.4

因此,对未知参数p和q的新估计是:

1531909-c75dbe5afa9c37a9.png


1531909-c142fe83d59c7b6e.png

上一步是“M”步骤或最大化步骤。我们重复上述EM步骤,直到'p'和'q'的值收敛。在这个例子中,'p'和'q'的值在大约10步中收敛到最终值p = 0.8和q = 0.52。

1531909-17b2a96b19fccfec.png

以上是EM算法应用的一个非常简单的例子。它用于表明给定具有缺失数据(含有隐变量)的参数估计问题,EM算法可以通过生成对丢失数据的可能猜测来迭代地解决该问题,然后通过使用这些猜测来最大化观察的可能性。除了简单的投掷硬币示例之外,EM已成功用于训练隐藏状态的HMM,EM也用于 聚类应用半监督学习

3 EM算法推导

上面是EM算法的一个简单感性的例子,下面我们看看如何用数学推导EM算法。在引入EM算法之前,我们先了解一些基础知识。

3.1 凸函数(Convex Functions)

定义1 假设f是在区间I = [a, b]的一个实数函数,当满足以下条件时,可以说f在区间是凸函数,

1531909-671d440622c9b1fc.png

此时,∀x1, x2 ∈ I, λ ∈ [0, 1]

定义2 如果-f是凸函数,那么f是凹函数.

定理1 如果f(x)在区间[a,b]上二阶可导,并且f''(x) ≥0,那么f(x)在[a,b]上是凸函数
证明

1531909-8917dbf77a35ecff.png

1531909-bbfb467c4d43f1a6.png

结论1 在(0, ∞),-ln(x)为凸函数,ln(x)为凹函数
证明

1531909-438134c5e2d991a2.png

3.2 Jensen’s 不等式

在区间I上,f是一个凸函数,有x1, x2, . . . , xn∈I,λ1, λ2, . . . , λn ≥ 0,

并且
1531909-11bed6fa67a0b82e.png

那么有
1531909-b3161db108a749db.png

证明

1531909-aaa43d2126c32794.png

1531909-1c84a557318a73d2.png

因为ln(x)为凹函数,那么有
1531909-668f221ba8272d12.png

结论2 Jensen's不等式同时也证明了算数平均要大于等于几何平均

1531909-bcb3fe9b3d7bb2cc.png

证明
1531909-eb3e9e5235544af6.png

3.3 EM推导

1531909-42509154ff9776c2.png

1531909-bbc830c228403043.png

1531909-711b49843d4eed21.png

1531909-33553c9174c8f786.png
1531909-6764b5adafd64a78.png

1531909-796e81045f16d0d3.png

1531909-06807004057b6439.png

1531909-e56060d26df62c75.png
1531909-6890f2a074d643d7.png

待续。

4 参考资料

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值