1 前言
相信有不少小伙伴刚接触Bouc-Wen模型的时候跟笔者一样,一头雾水。虽然网上提供了较多的经典Bouc-Wen滞回模型算法,但大部分仅提供简要的程序,但并未详细介绍Bouc-Wen滞回模型的基本原理。也相对较少涉及Bouc-Wen-Baber-Noori滞回模型(在经典Bouc-Wen滞回模型基础上进一步发展,考虑强度、刚度退化和捏拢效应)求解介绍。本文将介绍采用ODE求解器求解Bouc-Wen-Baber-Noori滞回模型的方法;Bouc-Wen-Baber-Noori滞回模型与经典Bouc-Wen滞回模型存在的关系;Bouc-Wen-Baber-Noori滞回模型中有无归一化的区别。
2 研究目的
许多工程结构在动荷载作用下会进入非弹性状态而表现出滞回特性。滞回特性也称为弹塑性。滞回一般来自材料的非线性特性、接触面的摩擦特性和结合面之间的接触变形等。在荷载作用下结构的恢复力与位移之间存在滞回关系,当荷载具有周期性时,由于结构进入弹塑性变形,塑性变形的位移不可全部恢复,使得曲线沿不同路径变化,形成滞回环。结构的实际滞回曲线十分复杂,难以应用于分析结构的非线性特性,因而需要建立既便于数学描述又能反映结构滞回特性的滞回模型来预测工程结构非线性动力响应。
非线性滞回系统的模拟和识别是土木工程结构抗震领域亟需解决的关键问题。弹塑性时程分析被认为是结构弹塑性时程分析的最可靠方法。结构或构件在反复荷载下的恢复力特性曲线的处理是进行弹塑性时程分析关键之一。结构恢复力模型不仅与瞬时输入有关,还很大程度上依赖于其加载历史路径,因此,模型具有强烈的非线性特点。至今,研究者们已提出了多种类型的恢复力模型,人们使用了多种滞回模型来描述这一现象,如双线性模型,三线性模型,Preisach模型,Backlash模型,然而它们都是线性的。滞回是一种典型的光滑非线性现象,线性滞回模型显然不能完美的描述这一现象,因此基于微分方程的光滑滞回模型得到人们的广泛关注。Bouc-Wen滞回模型由于具有很强的普适性和较高的模拟精度,能够模拟各种复杂滞回特性,可以通过改变模型的参数来反应强度退化、刚度退化和捏拢效应的影响,已被广泛应用于结构损伤识别、结构混合实验以及结构健康监测等领域。
Bouc-Wen滞回模型最早由Bouc在1971年提出,1976年由Wen改进。事实上,构件或结构进入非线性状态后,会出现强度、刚度退化和捏拢效应。因此,Wen、Baber、Noori通过定义强度、刚度退化参数和捏拢效应函数对该模型进行了修正。此后,Bouc-Wen滞回模型被广泛用于描述实际工程问题中遇到的非线性现象,特别是在土木工程和机械系统领域。
3基本原理
自由度体系可以简化成单自由体系进行分析,因此研究单自由度体系的响应状态是研究复杂的多自由度体系的基础。BWBN模型是单自由度的非线性平滑模型,能够灵活描述滞回动力特性的响应状态。图1给出了BWBN模型的基本构成,在外界激励力f(t)作用下单自由度体系的运动方程为:
BWBN模型的结构恢复力包含弹性恢复力和滞回恢复力,其表达式为:
式中:α为结构屈服后的切线刚度与初始线弹性刚度之比,α∈[0 1],当α=0时,结构模型为完全线性,当α