西瓜书《机器学习》课后编程题答案——3.4

该博客对比了10折交叉验证和留一法在UCI数据集(如Lris和西瓜数据集)上应用于逻辑回归时的错误率。在Lris数据集中,两种方法的错误率均为0,而在西瓜数据集中,10折交叉验证的错误率为0.235,留一法的错误率为0.117。作者发现不同方法的错误率有所差异,并提供了完整的程序代码和数据集下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.4选择两个UCI数据集,比较0折交叉验证法和留一法所估计出的对率回归的错误率.

本文在上一篇3.3的基础上主要实现10折交叉验证法和留一法对数据集的划分,逻辑逻辑回归部分代码大多数不变,本文针对改动部分作说明。
UCI数据集下载地址,本文下载Lris数据集。

10折交叉验证法数据集

10折交叉验证将数据集划分为10个大小相似的互斥子集,选择9份作为训练集,剩下的作为测试集,进行10次计算平均误差。首先对数据集进行划分保存。

def kfolddata(k, dataMat):
    import numpy as np
    import random
    numb = int(len(dataMat)/k)             #整除,每类可分numb个样本
    remainder = int(len(dataMat)%k)        #余数,将其随机分给K个类别
    index = random.sample(range(0, len(dataMat)), numb*k)   #随机生成numb*k不重复数,作为样本索引
    index = np.reshape(index,(k, numb))                     #reshape成k,numb
    for i in range(k):
        file_name = 'data' + str(i) + '.txt'
        file = open(file_name, 'a')                         #以a模式打开第i类样本
        if numb>1:                                          #将样本添加进第i类样本
            for ind in index[i][:]:
                file.write(str(dataMat[ind]))
                file.write(str('\n'
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值