正负样本不均衡是检测任务中常见的问题,在目标检测中,大量样本都是不包含目标的负样本,只有少量是包含目标的正样本,而Focal Loss就是为了解决这个问题而提出的。
Focal Loss的目的
- focal loss的主要目的是降低易分类样本的权重,使得模型更加关注困难样本,防止大量的简单样本主导模型的优化方向。
Focal Loss的计算方式
- 解决样本数量不均衡,在交叉熵中给交叉熵一个权重,也就是相反类的比重。这样一来,对于少量的样本,权重就比较大,对于大量的样本,权重就比较小。
- 解决难易样本不均衡,直观来说,就是对于较难的样本,给一个大权重,对于容易的样本,加一个小权重。具体计算公式如下:
博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏。