解题思路:
对于数组A[4, 3, 2, 6],以及其系数0,1, 2, 3。数组A向右旋转,等同于其系数向左旋转
0 1 2 3 F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
1 2 3 0 F(1) = (1 * 4) + (2 * 3) + (3 * 2) + (0 * 6) = 4 + 6 + 6 + 0 = 16
2 3 0 1 F(2) = (2 * 4) + (3 * 3) + (0 * 2) + (1 * 6) = 8 + 9 + 0 + 6 = 23
3 0 1 2 F(3) = (3 * 4) + (0 * 3) + (1 * 2) + (2 * 6) = 0 + 2 + 12 + 12 = 26
F(1) - F(0) = 4 + 3 + 2 - 3 * 6 = 4 + 3 + 2 + 6 - 4 * 6
F(2) - F(1) = 4 + 3 - 3 * 2 + 6 = 4 + 3 + 2 + 6 - 4 * 2
F(3) - F(2) = 4 - 3 * 3 + 2 + 6 = 4 + 3 + 2 + 6 - 4 * 3
即:
F(i) - F(i-1) = sumA - A.size() * A[size - i]
即:
F(i) = F(i-1) + sumA - A.size() * A[size - i]
依次计算F(i),选出其中的最大值
原题目:
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
AC解,C++代码,菜鸟一个,请大家多多指正
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
if (A.empty()) return 0;
int count = A.size();
int sumA = 0;
int maxF = 0;
int F = 0;
for (int i = 0; i < count; i++) {
sumA += A[i];
F += i * A[i];
}
maxF = F;
for (int i = 1; i < count; i++) {
F += sumA - count * A[count - i];
maxF = max(maxF, F);
}
return maxF;
}
};