Ollama 配置多并发和多模型

ollama新版已经支持了并发和多模型同时运行了, 系统资源够的可以走起了
默认的ollama服务是不支持的, 需要自己进行调整, 调整的方式如下:

Linux为例

  1. 通过调用 编辑 systemd 服务systemctleditollama.service 这将打开一个编辑器。
vim /etc/systemd/system/ollama.service

在[Service]部分下对于每个环境变量添加一行Environment, 如下所示

[Service]
Environment="OLLAMA_NUM_PARALLEL=4" #并行处理请求的数量
Environment="OLLAMA_MAX_LOADED_MODELS=4" #同时加载的模型数量
  1. 保存并退出。

3 . 重新加载systemd并重新启动 Olama:

sudo systemctl daemon-reload
sudo systemctl restart ollama

在restart ollama前一定要调用daemon reload, 不然不会起作用。

测试结果:

ollama 多模型同时运行

本课程了有关Transformer和大语言模型(LLM)的关键前置知识, 包括注意力机制、多头注意力、编码器-解码器结构等Transformer原理, 以及LLM的文本生成和LLM微调技术原理。在此基础上, 重点介绍了Llama 3模型的进化历程、技术原理和代码实现。其中涉及RMSNorm归一化、SwiGLU激活函数、RoPE位置编码、GQA注意力和KVCache等关键技术。通过代码解析, 深入剖析了Llama 3的架构设计和代码实现。在实践部分, 课程还介绍了如何在阿里云使用Ollama和vLLM部署Llama 3模型, 以及使用llama_factory工具进行基于LoRA和QLoRA的llama3 8B大模型微调。项目实战环节则提供了从准备数据集到训练、推理、评估的全流程指导, 聚焦中文增强和医疗问答两大应用方向。这是一门内容全面、理论实践并重的大模型课程。不仅系统讲解了LLM和Llama 3的技术原理, 还通过代码解析和实战项目深度剖析了相关技术在工程落地中的关键环节, 有助于学员全面掌握大模型相关知识和动手实战能力。-------------------------------------------------------------------------------具体课程内容如下:前置知识1:Transformer原理与代码精讲- 注意力机制:了解注意力机制如何使模型能够捕捉输入序列中不同位置之间的相关性。- 自注意力:解释自注意力如何允许序列的每个元素都与序列中的其他元素进行交互。- 多头注意力:探讨多头注意力如何通过并行处理多个注意力层来增强模型的能力。- 位置编码:学习位置编码如何为模型提供序列中单词的位置信息。- 编码器和解码器:深入分析Transformer的编码器和解码器结构,以及它们在模型中的作用。- 层归一化(LayerNorm)和前馈网络(FFN):介绍这两种技术如何帮助稳定和增强模型的训练过程。- 代码精讲:讲解Transformer模型的PyTorch代码实现细节等。 前置知识2:大模型(LLM)文本生成- LLM的推理方式- LLM的文本生成模式: 主要有Completion模式和Chat模式两种- LLM的文本生成策略: 包括贪婪搜索、束搜索、随机采样、温度采样、Top-k采样和Top-p采样等- LLM中的Token与分词器- llama3的文本生成过程- LLM文本生成的预填充和解码阶段- LLM文本生成中的Q、K、V机制 前置知识3:大模型微调原理- LLM的开发流程可分为预训练、有监督微调、奖励建模和强化学习四个阶段- 从基座模型到对话模型的转变。- 针对特定领域的SFT微调- 微调的技术方法包括全参微调、冻结微调、LoRA、QLoRA- LoRA技术原理和有效性- QLoRA技术原理 Llama3进化史和生态 Llama3原理精讲- Llama3模型架构- RMSNorm归一化技术- SwiGLU激活函数- RoPE旋转位置编码- GQA分组查询注意力- KVCache Llama3代码解析- 各文件功能- completion和chat应用脚本代码解析- generation.py代码解析- model.py代码解析- tokenizer.py代码解析- RMSNorm代码解析- SwiGLU代码解析- GQA代码解析- RoPE代码解析- KVCache代码解析 Llama3部署- Ollama部署llama3-阿里云免费GPU算力领取及实例创建、ollama安装、llama3推理- VLLM部署llama3 Llama3项目实战1-llama_factory微调llama3中文增强大模型- llama_factory介绍- llama_factory安装及llama3模型下载- LoRA微调训练llama3 8B Instruct模型- llama3中文增强大模型推理- llama3中文增强大模型评估(MMLU, CEVAL, CMMLU)- LoRA文件合并 Llama3项目实战2-llama_factory微调llama3医疗问答大模型(LoRA)- 准备医疗问答大模型数据集- LoRA微调训练llama3 8B Instruct模型- llama3医疗问答大模型推理 Llama3项目实战3-llama_factory微调llama3医疗问答大模型(QLoRA)- QLoRA微调训练llama3 8B Instruct模型- llama3医疗问答大模型推理-----------------------------------------------------------------------------------购课后可加入课程学习QQ群:364717673
### OLLAMA模型调优方法 对于OLLAMA模型而言,在不依赖于硬件加速的情况下,通过合理配置软件层面的参数同样能够显著提升模型的表现。具体来说,调整OLLAMA的服务配置文件中的各项参数是一个有效的途径。 #### 访问控制与网络设置 修改访问地址使得服务不仅限于本地回环接口(127.0.0.1),允许来自其他设备或同一局域网内计算机的请求连接至该服务器[^2]。这一步骤虽然主要影响的是可用性和安全性而非性能本身,但对于构建稳定的测试环境至关重要。 #### 模型内存管理优化 针对模型加载过程中的资源分配策略进行细致调节,特别是当面临计算能力有限的情况时更为重要。适当减少批处理大小(batch size),增加序列长度(sequence length)可能会带来意想不到的效果;同时注意监控物理内存占用情况,防止因过度消耗而导致系统不稳定甚至崩溃。 ```json { "model": { "batch_size": 8, "sequence_length": 64 } } ``` #### 并发处理能力增强 考虑启用多线程或多进程模式来充分利用现有CPU核心数,从而加快推理速度并改善响应时间。不过需要注意的是,过多的任务并发也可能引发新的瓶颈问题,因此建议逐步试验找到最适合当前系统的数值范围[^1]。 ```bash export OLLAMA_THREADS=4 ``` #### 缓存机制应用 利用缓存技术保存已经完成预测的结果片段,当下次遇到相似输入数据时不需重新执行完整的前向传播流程即可快速给出答案。此做法特别适用于那些具有高度重复性的应用场景之中。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zeloas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值