随机变量的数字特征

See this article on my own blog https://dyingdown.github.io/2020/01/02/Numerical-Characteristics-of-Rando-variables/
第四章 随机变量的数字特征

一、数学期望

  1. 离散型
    E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty} x_{k} p_{k} E(X)=k=1xkpk

    当上式发散时, X X X的数学期望不存在。

  2. 连续型

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty} x f(x) d x E(X)=+xf(x)dx

发散时, X X X的数学期望不存在

  1. 随机变量函数

    (1) 一维

Y = g ( X ) Y=g(X) Y=g(X) ( g g g是连续函数) X X X是随机变量。 ∑ k = 1 ∞ g ( x k ) ρ k \sum_{k=1}^{\infty} g\left(x_{k}\right) \rho_{k} k=1g(xk)ρk绝对收敛,则

连续型:

E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) P k E(Y)=E[g(X)]=\sum_{k=1}^{\infty} g\left(x_{k}\right) P_{k} E(Y)=E[g(X)]=k=1g(xk)Pk
​ 离散型:

E ( Y ) = E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E(Y)=E[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) dx E(Y)=E[g(X)]=+g(x)f(x)dx
(2) 二维

​ 离散型:

E ( Z ) = E [ g ( X , Y ) ] = ∑ i = 1 ∞ ∑ j = 1 ∞ g ( x i , y j ) p i j E(Z)=E[g(X, Y)]=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} g\left(x_{i}, y_{j}\right) p_{i j} E(Z)=E[g(X,Y)]=i=1j=1g(xi,yj)pij
​ 连续型:

E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E(Z)=E[g(X, Y)]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) d x d y E(Z)=E[g(X,Y)]=++g(x,y)f(x,y)dxdy

  1. 数学期望的性质

​ (1) C C C是常数 E ( C ) = C E(C)=C E(C)=C

​ (2) E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)

​ (3)任意两个随机变量 X , Y X,Y XY E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)

​ 有限个 E ( X 1 + E 2 + ⋯ + X n ) = E ( X 1 ) + E ( X 2 ) + ⋯ + E ( X n ) E\left(X_{1}+E_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right) E(X1+E2++Xn)=E(X1)+E(X2)++E(Xn)

​ (4)相互独立的 X , Y X,Y XY E ( X Y ) = E ( X ) E ( Y ) E(X Y)=E(X) E(Y) E(XY)=E(X)E(Y)

​ 有限个 E ( X 1 X 2 ⋯ X n ) = E ( X 1 ) E ( X 2 ) ⋯ E ( X n ) E\left(X_{1} X_{2} \cdots X_{n}\right)=E\left(X_{1}\right) E\left(X_{2}\right) \cdots E\left(X_{n}\right) E(X1X2Xn)=E(X1)E(X2)E(Xn)

二、方差

  1. 定义

    D ( X ) = Var ⁡ ( X ) = E { [ X − E ( X ) ] 2 } D(X)=\operatorname{Var}(X)=E\left\{[X-E(X)]^{2}\right\} D(X)=Var(X)=E{ [XE(X)]2}

    D ( X ) \sqrt{D(X)} D(X) 标准差 or 均方差

  2. 计算

    离散型 D ( X ) = ∑ k = 1 ∞ [ x k − E ( x ) ] 2 p k D(X)=\sum_{k=1}^{\infty}\left[x_{k}-E(x)\right]^{2} p_{k} D(X)=k=1[xkE(x)]2pk

    连续型 D ( X ) = ∫ − ∞ + ∞ [ x − E ( x ) ] 2 f ( x ) d x D(X)=\int_{-\infty}^{+\infty}[x-E(x)]^{2} f(x) d x D(X)=

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值