Python数据分析与展示:NumPy库入门

NumPy库入门

数据的维度

从一个数据到一组数据:表达一个含义到表达多个含义

维度:一组数据的组织形式


一维数据

一维数据由对等关系的有序或无序数据组成,采用线性方式组织。对应列表、数组、集合等概念。

列表:数据类型可以不同。

数组:数据类型必须相同。

二维数据

二维数据由多个一维数组组成,是一维数据的组合形式。

多维数据

多维数据由一维数据或者二维数据在新维度上扩展形成,

高维数据——键值对

仅仅使用最基本的二元关系展示数据之间的复杂结构。


数据维度的python表示

  • 一维数据:列表和集合类型(有序和无序的区别)

  • 二维数据:列表类型

  • 多维数据:列表类型

  • 高维数据:字典类型或数据表示格式(JSON、XML、和YAML格式)


NumPy的数组对象:ndarray

NumPy是一个开源的python科学计算基础库。

  • 一个强大的N维数组对象:ndarray
  • 广播功能函数
  • 整合C/C++/Fortran代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

NumPy是Scipy、Pandas等数据处理和科学计算库的基础。


Numpy的引用

import numpy as np #np为引入模块的别名 这样做是为了每次调用numpy库时更加简略且易读。

N维度数组对象:ndarray

例:计算A²+B²,其中A和B为一维数组。

  • 原始代码:
def pysum():
    a = [0, 1, 2, 3, 4]
    b = [9, 8, 7, 6, 5]
    c = []
    for i in range(len(a)):
        c.append(a[i]**2+b[i]**3)
        
    return c
print(pysum())
  • 调用numpy库的科学计算方法:
import numpy as np
def npsum():
    a = np.array([0, 1, 2, 3, 4])#用 np.array()生成数组a
    b = np.array([9, 8, 7, 6, 5])
    
    c= a**2 + b**3#直接把数组a和b视作两个数据,当他们维度相同时可以直接进行运算
    
    return c
print(npsum())
  • 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据。

  • 通过设置专门的数组对象,经过优化,可以提升这类应用的运算速度。(numpy的底层实现是由c来完成的,运算更加高效)

  • 数组对象采用相同的数据类型,有助于节省运算和存储空间。

ndarray是一个多维数组对象,由两部分构成:

  1. 实际的数据
  2. 描述这些数据的元数据(数据维度、数据类型等)

ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始

ndarray对象的属性

属性说明
.ndim秩,即轴的数量或者维度的数量
.shapendarray对象的尺度,对于矩阵,n行m列
.sizendarray对象元素的个数,相当于.shape中n*m的值
.dtypendarray对象的元素类型
.itemsizendarray对象中每个元素的大小,以字节为单位

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Obs4eQ3a-1611467291132)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\E68BFB6D8F3BAF86BD422444E1A9FEE5.png)]

ndarray的元素类型

数据类型说明
bool布尔类型,True或者False
intc与C语言中的int类型一致,一般是int32或者int64
intp用于索引的整数,与C语言中ssize_t一致,int32或int64
int8字节长度的整数 [-128,127]
int1616位长度的整数 [-32768,32767]
int3232位长度的整数 [-2^31, 2^31-1]
int6464位长度的整数 [-2^63, 2^63-1]
uint88位无符号整数 [0,255]
uint1616位无符号整数 [0,65535]
uint3232位无符号整数 [0,2^32-1]
uint6464位无符号整数 [0,2^64-1]
float1616位半精度浮点数:1位符号位,5位指数,10位尾数
float3232位半精度浮点数:1位符号位,8位指数,23位尾数
float6464位半精度浮点数:1位符号位,11位指数,52位尾数
complex64复数类型,实部和虚部都是32位浮点数
complex128复数类型,实部和虚部都是64位浮点数

对比:Python语法仅支持整数、浮点数和复数三种类型。

  • 科学计算涉及数据较多,对存储和性能都有较高要求。

  • 对元素类型精细定义,有助于NumPy合理使用存储空间并且优化性能。

  • 对元素类型精细定义,有助于程序猿对程序规模有合理的评估。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uVwhZfT9-1611467291136)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\3D8990BB742699C0BD85A96008899C7C.png)]


ndarray数组的创建和变换

ndarray数组的创建

  • 从python中的列表、元组等类型创建ndarray数组
x = np.array(list/tuple)
x = np.array(list/tuple,dtype=np.float32)#用dtype指定每个元素的数据类型,当不指定类型时,NumPy将跟据数据情况关联一个dtype类型
  • 最常用的方法:使用NumPy中函数创建ndarray数组
函数说明
np.arange(n)类似range()函数,返回ndarray类型,元素从0到n-1
np.ones(shape)跟据shape生成一个全1数组,shape是元组类型
np.zeros(shape)跟据shape生成一个全0数组,shape是元组类型
np.full(shape,val)跟据shape生成一个数组,每个元素值都是val
np.eye(n)创建一个正方的n*n单位矩阵,对角线为1,其余都是0
np.ones_like(a)跟据数组a的形状生成一个全1数组
np.zeros_like(a)跟据数组a的形状生成一个全0数组
np.full_like(a,val)跟据数组a的形状生成一个数组,每个元素值都是val
np.linspace()跟据起止数据等间距地填充数据,形成数组
np.concatenate()将两个或多个数组合并称为一个新的数组

#需要注意的是,除非用户用detype()来指定,ones(),zeros(),eye()等函数生成的元素都是浮点数类型,只有arange()生成的数组元素是整数类型。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-u6J5Pyy4-1611467291138)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\EAA36D1029D6CA154592E109A6423556.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4QLBzJUm-1611467291153)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\F63982427D7A246B9117054F46E1A313.png)]

ndarray数组的变换

对于创建后的ndarray数组,可以对其进行维度变换和元素类型变换。

ndarray数组的维度变换

方法说明
.reshape(shape)不改变数组元素,返回一个shape形状的数组,原数组不变
.resize(shape)与.reshape()功能一致,但修改原数组
.swapaxes(ax1,ax2)将数组n个维度中两个维度进行调换
.flatten()对数组进行降维,返回折叠后的一维数组,原数组不变

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ITo9VgkH-1611467291159)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\5889B03C91A6E239E6611DC30B834CA6.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YPhepVQG-1611467291160)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\F465FFCBE1484D196C41BA6814287723.png)]

ndarray数组的类型变换

new_a = a.astype(new_type)
ls = a.tolist()#ndarray数组向列表的转换

#使用astype()方法一定会创建一个新的数组(是原始数据的一个拷贝,即使两个类型一致)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dWXja1eM-1611467291162)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\586361459BF29FD3BE0BA8DA0647AEF0.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZBi6QZ5L-1611467291165)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\497FBCE1880F12C5A7E350AF94D807E0.png)]


ndarray数组的操作

数组的索引和切片

  • 索引:获取数组中特定位置元素的过程
  • 切片:获取数组中元素子集的过程

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tjWvLVi8-1611467291167)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\26GP1QPZ8UKXZU[LL6J5XUM.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eAUp2UEP-1611467291168)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\DMSY%7580UB`]EA]T~X3V75.png)]

ndarray数组的运算

数组与标量之间的运算

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PdPP5ZxQ-1611467291169)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\KYWND5DT]GPBM3VA{4`}F.png)]

用函数对数组进行运算

即为对数组中每一个元素进行运算。

常用的一元函数:

函数说明
np.abs(x) np.fabs(x)计算数组各个元素的绝对值
np.sqrt(x)计算数组各元素的平方根
np.square(x)计算数组各元素的平方
np.log(x) np.log10(x) np.log2(x)计算数组各元素的自然对数、10底对数和2底对数
np.ceil(x) np.floor(x)计算数组各元素的ceiling值(不超过元素的整数值)或floor值(小于元素的最大整数值)
np.rint(x)计算数组各元素的四舍五入值
np.modf(x)将数组各元素的小数和整数部分以两个独立数组形式返回
np.exp(x)计算数组各元素的指数值
np.sign(x)计算数组各元素的符号值,1(+),0,-1(-)
np.sin/cos/tan(x)计算数组各元素的普通型三角函数
np.sinh/cosh/tanh(x)计算数组各元素的双曲型三角函数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4T9jI51z-1611467291170)(C:\Users\mengz\Desktop\课件截图\NumPy库入门\B5[H8G~IBAL6XHH86[9UVUP.png)]

对两个数组进行计算的二元函数:

函数说明
+ - * / **两个数组各元素进行对应运算
np.maximum(x,y) np.fmax()元素的最大值计算
np.minmun(x,y) np.fmin()元素的最小值计算
np.mod(x,y)元素的模运算
np.copysign(x,y)将数组y中各元素值的符号赋值给数组x对应元素
> < <= >= == ! !=算术比较,产生布尔型数组

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AGs5pVt4-1611467291170)(Python数据分析:Numpy库入门.assets/9NVWGY8O0L[QU)]C%MZWVL0R.png)
#所有视频截图均来自中国大学mooc北京理工大学嵩天老师的课程
《Python数据分析与展示》

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页