小朋友排队【第五届】【省赛】【B组】

题目描述

n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。

每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。

如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。

请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。

如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。

数据格式

输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。

例如,输入:
3
3 2 1
程序应该输出:
9

样例说明

首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。

数据规模和约定

对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;

资源约定

峰值内存消耗 < 256M
CPU消耗 < 1000ms

思路

  首先分析题目,只能是相邻的小朋友交换,并且身高相同不用交换,因为要求最小值,所以基于贪心思想,对于相邻两小朋友如果已经排好了,就不要去动他们了。所以我们考虑的是那些没有排好的相邻的小朋友,然后可能就会想到,那这样的两个小朋友,不就是一个逆序对吗?。基于此继续往下分析。
  当我们消除了所有的逆序对的时候,那是不是就已经排好顺序了。结果是肯定的,由低到高顺序排列逆序对数量为0。此时就转化为消除逆序对的问题了,然后接着分析。
  交换两个没排好的数,逆序对数量会减一,那么就是说有多少逆序对,那么我们就需要交换多少次。假设有 k k k 个逆序对,那么我们最少要交换 k k k 次,那么这时候最小交换次数就知道了,就可以看怎么进行交换,才能保证不高兴值最小。
  分析每个小朋友可能的交换次数,假设有一组序列, a 1 , a 2 , . . . , a i , a a + 1 , . . . , a n , a_1, a_2, ..., a_i, a_{a+1}, ..., a_n, a1,a2,...,ai,aa+1,...,an a i a_i ai 前面有 k 1 k_1 k1 个小朋友比他高,后面有 k 2 k_2 k2 个小朋友比他低,那么要想把这些小朋友保持有序, a i a_i ai 就至少需要交换 k 1 + k 2 k_1 + k_2 k1+k2 次,所以这时候就很清晰了,我们只需要统计一下每一个小朋友,他前面有多少比他高的,后面有多少比他低的,相加就是最少的交换次数。
  假设我们把小朋友的身高当下标,值为身高出现的次数,那么我们就可以使用树状数组来解题了。统计身高和建立树状数组都是 O ( l o g n ) O(logn) O(logn)的,每一个小朋友都有求一遍,那么总的就是 O ( n l o g n ) O(nlogn) O(nlogn) 的。

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 1000010;

int n;
int a[N], tr[N];
int sum[N];

int lowbit(int x)
{
    return x & -x;
}

void add(int x, int v)
{
    for ( int i = x; i < N; i += lowbit(i) ) tr[i] += v;
}

int query(int x)
{
    int res = 0;
    for ( int i = x; i; i -= lowbit(i) ) res += tr[i];
    return res;
}

int main()
{
    cin >> n;
    
    for ( int i = 0; i < n; i ++ ) cin >> a[i], a[i] ++;
    
    for ( int i = 0; i < n; i ++ )
    {
        sum[i] += query(N - 1) - query(a[i]);
        add(a[i], 1);
    }
    
    memset(tr, 0, sizeof tr);
    
    for ( int i = n - 1; i >= 0; i -- )
    {
        sum[i] += query(a[i] - 1);
        add(a[i], 1);
    }
    
    LL res = 0;
    
    for ( int i = 0; i < n; i ++ ) res += (LL)sum[i] * (sum[i] + 1) / 2;
    
    cout << res << endl;
    
    return 0;
    
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值