题目描述
n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
数据格式
输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
例如,输入:
3
3 2 1
程序应该输出:
9
样例说明
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
数据规模和约定
对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
资源约定
峰值内存消耗 < 256M
CPU消耗 < 1000ms
思路
首先分析题目,只能是相邻的小朋友交换,并且身高相同不用交换,因为要求最小值,所以基于贪心思想,对于相邻两小朋友如果已经排好了,就不要去动他们了。所以我们考虑的是那些没有排好的相邻的小朋友,然后可能就会想到,那这样的两个小朋友,不就是一个逆序对吗?。基于此继续往下分析。
当我们消除了所有的逆序对的时候,那是不是就已经排好顺序了。结果是肯定的,由低到高顺序排列逆序对数量为0。此时就转化为消除逆序对的问题了,然后接着分析。
交换两个没排好的数,逆序对数量会减一,那么就是说有多少逆序对,那么我们就需要交换多少次。假设有
k
k
k 个逆序对,那么我们最少要交换
k
k
k 次,那么这时候最小交换次数就知道了,就可以看怎么进行交换,才能保证不高兴值最小。
分析每个小朋友可能的交换次数,假设有一组序列,
a
1
,
a
2
,
.
.
.
,
a
i
,
a
a
+
1
,
.
.
.
,
a
n
,
a_1, a_2, ..., a_i, a_{a+1}, ..., a_n,
a1,a2,...,ai,aa+1,...,an,
a
i
a_i
ai 前面有
k
1
k_1
k1 个小朋友比他高,后面有
k
2
k_2
k2 个小朋友比他低,那么要想把这些小朋友保持有序,
a
i
a_i
ai 就至少需要交换
k
1
+
k
2
k_1 + k_2
k1+k2 次,所以这时候就很清晰了,我们只需要统计一下每一个小朋友,他前面有多少比他高的,后面有多少比他低的,相加就是最少的交换次数。
假设我们把小朋友的身高当下标,值为身高出现的次数,那么我们就可以使用树状数组来解题了。统计身高和建立树状数组都是
O
(
l
o
g
n
)
O(logn)
O(logn)的,每一个小朋友都有求一遍,那么总的就是
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn) 的。
代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 1000010;
int n;
int a[N], tr[N];
int sum[N];
int lowbit(int x)
{
return x & -x;
}
void add(int x, int v)
{
for ( int i = x; i < N; i += lowbit(i) ) tr[i] += v;
}
int query(int x)
{
int res = 0;
for ( int i = x; i; i -= lowbit(i) ) res += tr[i];
return res;
}
int main()
{
cin >> n;
for ( int i = 0; i < n; i ++ ) cin >> a[i], a[i] ++;
for ( int i = 0; i < n; i ++ )
{
sum[i] += query(N - 1) - query(a[i]);
add(a[i], 1);
}
memset(tr, 0, sizeof tr);
for ( int i = n - 1; i >= 0; i -- )
{
sum[i] += query(a[i] - 1);
add(a[i], 1);
}
LL res = 0;
for ( int i = 0; i < n; i ++ ) res += (LL)sum[i] * (sum[i] + 1) / 2;
cout << res << endl;
return 0;
}