素数性质及测试法

定义:

在大于1的自然数中,除了1和它本身以外不再有其他因数。

性质:

  1. 素数的个数无限多

  2. 所有大于2的素数都可以唯一地表示成两个平方数之差

  3. n n n 为大于2的整数时, 2 n + 1 2^n+1 2n+1 2 n − 1 2^n-1 2n1 两个数中,如果其中一个数是素数,那么另一个数一定是合数

  4. 如果 p p p 是素数, a a a p p p 互质,那么 a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod{p} ap11(modp)(费马小定理)

素数测试法:

  1. 试除法,尝试从2到 n \sqrt{n} n 的整数是否整除 n n n

  2. 费马小定理的逆命题(伪素数)

  3. Miller-Rabin测试

    如果 p p p 是素数, x x x 是小于 p p p 的正整数,且 x 2   m o d   p = 1 x^2 \bmod p = 1 x2modp=1,那么要么 x = 1 x=1 x=1,要么 x = p − 1 x=p-1 x=p1。这是显然的,因为 x 2   m o d   p = 1 x^2 \bmod p = 1 x2modp=1相当于 p p p 能整除 x 2 − 1 x^2 - 1 x21,也即 p p p 能整除 ( x + 1 ) ( x − 1 ) (x+1)(x-1) (x+1)(x1)。由于 p p p 是素数,那么只可能是 x − 1 x-1 x1 能被 p p p 整除(此时 x = 1 x=1 x=1)或 x + 1 x+1 x+1 能被 p p p 整除(此时 x = p − 1 x=p-1 x=p1)。

    强伪素数

  4. 埃氏筛法

    1. 1不是素数,首先把它筛掉

    2. 剩下的数中选择最小的素数,去掉它的倍数

    3. 重复步骤2,直到看完n以内的所有数

    #define N 1000100
    #define LL long long
    int prim[N];//被筛出的素数
    bool isprim[N];//数字 i 是否是素数
    int pn = 0;//当前素数的个数
    void table(){
        memset(isprim,true,sizeof(isprim));
        isprim[0]=isprim[1]=false;
        for(int i = 2;i < N;i++) 
        if(isprim[i]){
            prim[++pn] = i;
            for(LL j = i*i;j < N;j += i)    num[j] = 0;
        }
    }
    

    注意在标记i的倍数只需从 i ∗ i i * i ii 开始,因为小于它的 i i i 的倍数势必已经被更小的数作为倍数筛掉。同时小心 i ∗ i i * i ii 爆int。但是这个写法会让一些数被重复筛。

  5. 线性筛法(欧拉筛法)

    线性筛法顾名思义就是用 O ( n ) O(n) O(n) 的时间复杂度筛出所有素数,这种算法比埃氏筛更优,假如我们要判断 30 是不是素数,用埃氏筛会被2、3、5作为倍数筛三遍,这样的访问太多余了。

    欧拉筛法做到了每个数只被筛一遍。

    #define N 1000100
    #define LL long long
    int prim[N];
    bool isprim[N]
    int pn = 0;
    void table(){
        memset(isprim,true,sizeof(isprim));
        isprim[0]=isprim[1]=false;
        for(int i = 2;i < N;i++){
            if(isprim[i]) prim[++pn] = i;
            for(int j = 0;j < pn && 1LL*i*prim[j] < N;j++){
                isprim[i*prim[j]] = 0;
                if(i % prim[j] == 0) break;
            }
        }
    }
    

    全篇的精华在于: if(i % prim[j] == 0) break;

    这个 break 保证了合数只被最小的素约数访问到。
    比如在筛 125 时会被 5 × 25 5 \times 25 5×25 筛掉,此时

    i = 25 , p r i m [ j ] = 5 i=25,prim[j]=5 i=25,prim[j]=5

    假如我们不退出循环继续筛就会变成

    i = 25 , p r i m [ j ] = 7 i=25,prim[j]=7 i=25,prim[j]=7

    这样就会把 175 筛掉,但是 175 的最小素约数是 5,即

    175 = 5 × 5 × 7 175=5 \times 5 \times 7 175=5×5×7

    所以存在 5 × 35 5 \times 35 5×35 可以筛掉 175。

    我们继续推广到一般情况

    i % prim[j] == 0 i i i 可以被表示成 p r i m [ j ] × k prim[j] \times k prim[j]×k

    则下一个数为 p r i m [ j + 1 ] × ( p r i m [ j ] × k ) prim[j+1] \times \left(prim[j] \times k \right) prim[j+1]×(prim[j]×k)

    因为 p r i m [ j ] < p r i m [ j + 1 ] prim[j] < prim[j+1] prim[j]<prim[j+1]

    所以一定存在 p r i m [ j ] × ( p r i m [ j + 1 ] × k ) prim[j] \times \left(prim[j+1] \times k \right) prim[j]×(prim[j+1]×k) 使得当前数被最小的素约数筛。

In the End

关于素数的基本内容已经介绍完毕,素数作为数论中很重要的一部分,经常会出现在试题当中,掌握上述知识,在OI之路上更上一层楼。

coding

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ycw-123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值