前言:接上次的内容
提示:以下是本篇文章正文内容,下面案例可供参考
一、绘制直方图
使用hist()绘制直方图
示例:绘制一个具有8个矩形条填充的线条直方图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
scores = np.random.randint(0,100,50) #准备50个随机测试数据
fig = plt.figure() ##创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
ax.hist(scores, bins=8, histtype='stepfilled') #绘制直方图
plt.show()
下面用实例来绘制直方图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
random_state = np.random.RandomState(19680801) #10000个随机数
random_x = random_state.randn(10000)
ax.hist(random_x, bins=25) #绘制包含25个矩形条的直方图
plt.show()
也改变直方图的样式,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
random_state = np.random.RandomState(19680801)
random_x = random_state.randn(10000)
ax.hist(random_x, bins=25, histtype='step') #'step'代表未填充线条
plt.show()
2.绘制饼图或圆环图
使用pie()绘制饼图或圆环图
示例一:使用pie()函数绘制一个饼图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
data = np.array([20, 50, 10, 15, 30, 55])
pie_labels = np.array(['A', 'B', 'C', 'D', 'E', 'F'])
ax.pie(data, radius=1.5, labels=pie_labels, autopct='%3.1f%%') #绘制饼图:半径为0.5,数值保留1为小鼠
plt.show()
示例二:使用pie()函数绘制一个圆环图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
data = np.array([20, 50, 10, 15, 30, 55])
pie_labels = np.array(['A', 'B', 'C', 'D', 'E', 'F'])
#绘制圆环图:外圆半径为1.5,楔形宽度为0.7
ax.pie(data, radius=1.5, wedgeprops={'width':0.7}, labels=pie_labels, autopct='%3.1f%%', pctdistance=0.75)
plt.show()
3. 绘制散点图或气泡图
使用scatter()绘制散点图或气泡图
示例一:使用scatter()函数绘制一个散点图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
num = 50 #随机50个数
x = np.random.rand(num)
y = np.random.rand(num)
ax.scatter(x, y)
plt.show()
示例二:使用scatter()函数绘制一个气泡图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
num = 50 #随机50个数
x = np.random.rand(num)
y = np.random.rand(num)
area= (30 * np.random.rand(num))**2 #随机数据点大小
ax.scatter(x, y, s=area)
plt.show()
用实例绘制散点图,示例代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
#准备x轴和y轴的数据
x_speed = np.arange(10, 210, 10)
y_distance = np.array([0.5, 2.0, 4.4, 7.9, 12.3,
17.7, 24.1, 31.5, 39.9, 49.2,
59.5, 70.8, 83.1, 96.4, 110.7,
126.0, 142.2, 159.4, 177.6, 196.8])
ax.scatter(x_speed, y_distance, s=50, alpha=0.9) #s表示数据点大小,alpha表示透明度
plt.show()
4. 绘制误差棒图
使用errorbar()绘制误差棒图
示例:使用errorbar()函数绘制一个误差棒图,代码如下:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure() #创建类
ax = fig.add_subplot() #给画布fig上添加坐标系风格的绘图区域ax
x = np.arange(5) #准备数据
y = (25, 32, 34, 20, 25)
y_offset = (3, 5, 2, 3, 3) #准备误差
ax.errorbar(x, y, yerr=y_offset, capsize=3, capthick=2) #capsize表示误差棒边界横杆的大小,capthick表示误差棒边界横杆的厚度
plt.show()
用柱形图和误差棒图绘制实例图,代码如下:
import matplotlib.pyplot as plt
import numpy as np
# 显示中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
# 创建画布
fig = plt.figure()
# 在画布上添加绘图区域
ax = fig.add_subplot(111)
# 准备数据
# 准备 x 轴和 y 轴的数据
x = np.arange(3)
y1 = np.array([2.04, 1.57, 1.63])
y2 = np.array([1.69, 1.61, 1.64])
y3 = np.array([4.65, 4.99, 4.94])
y4 = np.array([3.39, 2.33, 4.10])
# 指定测量偏差
error1 = [0.16, 0.08, 0.10]
error2 = [0.27, 0.14, 0.14]
error3 = [0.34, 0.32, 0.29]
error4 = [0.23, 0.23, 0.39]
bar_width = 0.2
# 调用绘图方法绘制图表
width = 0.2
ax.bar(x, y1,width=bar_width)
ax.bar(x+width, y2,align='center',tick_label=['春季','夏季','秋季'],width=bar_width)
ax.bar(x+2*width, y3,width=bar_width)
ax.bar(x+3*width, y4,width=bar_width)
# 添加误差棒
ax.errorbar(x,y1,yerr=error1,capsize=4,capthick=1,fmt='k,')
ax.errorbar(x+width,y2,yerr=error2,capsize=4,capthick=1,fmt='k,')
ax.errorbar(x+2*width,y3,yerr=error3,capsize=4,capthick=1,fmt='k,')
ax.errorbar(x+3*width,y4,yerr=error4,capsize=4,capthick=1,fmt='k,')
# 展示图表
plt.show()
总结
以上就是今天要讲的内容,本文是对上次文章的补充