LEARNING OF SLAM
文章平均质量分 83
系统地学习和入门SLAM,定期记录自己的学习痕迹。
参考书籍《视觉slam14讲从理论到实践》
Shieffer
这个作者很懒,什么都没留下…
展开
-
《视觉slam十四讲从理论到实践》第六讲概述总结
在学习《视觉slam十四讲从理论到实践》第六讲的过程中,觉得这一部分的知识在数学层面上是具有通用性的,数据的非线性优化和最小二乘法的处理知识不止在SLAM中发挥作用,还会在其他领域例如机器学习等得到应用,觉得比较重要,有必要再自己总结一下加深理解。我们期望,通过处理一段时间内带有随机噪音的批量观测数据和输入数据,得到一组优化后的状态估计值,并把这些估计值作为当前的状态。我们会把以上问题转化为最小二乘的问题,然后求解这个最小二乘问题的过程就是优化估计值的过程。原创 2021-11-16 20:06:28 · 491 阅读 · 0 评论 -
《视觉slam十四讲从理论到实践》第四讲习题自测解答
李群的定义李代数的定义1、验证$SO(3)、SE(3)和Sim(3)$关于乘法成群。2、验证$(\mathbb{R}^3,\mathbb{R},\times)$构成李代数。3、验证$so(3)$和$se(3)$满足李代数要求的性质。4、证明性质$(4.20)$和$(4.21)$。6、证明: $Rexp(p^\wedge)R^T=exp\left((Rp)^5、证明: $Rp^\wedge R^T=(Rp)^\wedge$7、仿照左扰动的推导,推导$SO(3)$和$SE(3)$在右扰动下的导数原创 2021-10-12 19:03:29 · 439 阅读 · 0 评论 -
《视觉slam十四讲从理论到实践》第三讲习题自测解答
1、验证旋转矩阵是正交矩阵。2*、寻找罗德里格斯公式的推导过程并加以理解3、验证四元数旋转某个点后,结果是一个虚四元数(实部为零),所以仍然对应到一个三维空间点,见式(3.33)。4、画表总结旋转矩阵、轴角、欧拉角、四元数的转换关系。5、假设有一个大的Eigen矩阵,想把它的左上角3x3的块取出来,然后赋值为$I_{3x3}$。请编程实现。6*、一般线性方程 $Ax=b$ 有哪几种做法?你能在Eigen中实现吗?原创 2021-10-03 20:49:30 · 281 阅读 · 1 评论 -
《视觉slam十四讲从理论到实践》第一讲习题自测解答
《视觉slam十四讲从理论到实践》第一讲习题自测解析。借助自身知识储备和搜索引擎后完成习题,以下所有为个人解答,仅供参考。原创 2021-09-19 17:44:31 · 314 阅读 · 0 评论