《视觉slam十四讲从理论到实践》第六讲概述总结

本文总结了《视觉SLAM十四讲从理论到实践》第六讲,探讨如何将SLAM中的状态估计问题转化为最小二乘问题。通过处理带有噪音的观测和输入数据,目标是找到一组优化的状态估计值。介绍了最大似然估计与最小二乘法的关系,以及在高斯分布下的优化过程。文章还提及了数值优化方法,如高斯-牛顿法和列文伯格-马夸特方法,用于求解最小二乘问题。
摘要由CSDN通过智能技术生成

0x00 前言

在学习《视觉slam十四讲从理论到实践》第六讲的过程中,觉得这一部分的知识在数学层面上是具有通用性的,数据的非线性优化和最小二乘法的处理知识不止在SLAM中发挥作用,还会在其他领域例如机器学习等得到应用,觉得比较重要,有必要再自己总结一下加深理解。
本文的重点放在如何将SLAM中状态估计问题转化成一个最小二乘问题。
但只是基于书本所说的内容,并且所举例子也依托于SLAM这样一个背景,并没有做额外拓展。

0x01 本讲概述总结

  我们期望,通过处理一段时间内带有随机噪音的批量观测数据和输入数据,得到一组优化后的状态估计值,并把这些估计值作为当前的状态。我们会把以上问题转化为最小二乘的问题,然后求解这个最小二乘问题的过程就是优化估计值的过程。
  可以假设观测数据为 z z z ,输入数据为 u u u ,当前位置为 x x x ,观测目标位置为 y y y ,由于在观测的过程中不可避免地带有噪音,所以我们想依据当前的观测数据,期望得到最接近真实值的估计值,度量"最接近"是一个可能性问题,那么从概率学的观点来看,可以求状态 x , y x,y x,y 的条件概率分布:
P ( x , y ∣ z , u ) . P(x,y|z,u). P(x,yz,u).
  我们可以认为上述概率最大时所对应的状态最接近真实值,但是直接求后验概率的分布是困难的,求一个状态最优估计,使得在该状态下后验概率最大化则是可行的。也可以反过来这样理解:后验概率最大化时所对应的状态为状态最优估计。那么通过贝叶斯法则的转换,可以将求解最大后验概率等价于求解最大似然估计(Maximize Likelihood Estimation, MLE):
( x , y ) ∗ M L E = a r g    m a x    P ( z , u ∣ x , y ) . {(x,y)^*}_{MLE}=arg\;max\;P(z,u|x,y). (x,y)MLE=argmaxP(z,ux,y).

直观地讲,似然是指“在现在的位姿下,可能产生怎样的观测数据”。由于我们知道观测数据,所以最大似然估计可以理解成:“在什么样的状态下,最可能产生现在观测到的数据”。这就是最大似然的直观意义。

  考虑某一次的观测,我们假设随机噪音服从高斯分布,那么似然也服从高斯分布:
P ( z j , k ∣ x k , y j ) = N ( h ( y j , x k ) , Q k , j ) . P(z_{j,k}|x_k,y_j) = N(h(y_j,x_k),Q_{k,j}). P(zj,kxk,yj)=N(h(yj,xk),Qk,j).
   h ( y j , x k ) h(y_j,x_k) h(yj,x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值