《视觉slam十四讲从理论到实践》第三讲习题自测解答

0x00 前言

《视觉slam十四讲从理论到实践》第三讲习题自测解析。
借助自身知识储备和搜索引擎后完成习题,仅供参考。
部分答案会觉得没有说明的必要就会略

0x01 习题部分

1、验证旋转矩阵是正交矩阵。[参考]

 设两组单位正交基分别为 ( e 1 , e 2 , e 3 ) , ( e 1 ′ , e 2 ′ , e 3 ′ ) (e_1,e_2,e_3),(e_1^{'},e_2^{'},e_3^{'}) (e1,e2,e3),(e1,e2,e3).(e是列向量)
 同一个向量 a ⃗ \vec{a} a 在两个坐标系下的坐标为 [ a 1 , a 2 , a 3 ] T [a_1,a_2,a_3]^T [a1,a2,a3]T [ a 1 ′ , a 2 ′ , a 3 ′ ] T [a_1^{'},a_2^{'},a_3^{'}]^T [a1,a2,a3]T.
 可如下推得旋转矩阵 R : R: R:

[ e 1 , e 2 , e 3 ] [ a 1 a 2 a 3 ] = [ e 1 ′ , e 2 ′ , e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] (1.1) [e_1,e_2,e_3]\left[\begin{matrix} a_1\\ a_2\\ a_3 \end{matrix}\right] =[{e_1}^{'},{e_2}^{'},{e_3}^{'}] \left[\begin{matrix} {a_1}^{'}\\ {a_2}^{'}\\ {a_3}^{'} \end{matrix}\right]\tag{1.1} [e1,e2,e3]a1a2a3=[e1,e2,e3]a1a2a3(1.1)
 等式两边同左乘 [ e 1 T e 2 T e 3 T ] \left[\begin{matrix} {e_1}^{T}\\ {e_2}^{T}\\ {e_3}^{T} \end{matrix}\right] e1Te2Te3T,可得左边系数部分结果是一个单位矩阵,所以:
[ a 1 a 2 a 3 ] = [ e 1 T e 1 ′ e 1 T e 2 ′ e 1 T e 3 ′ e 2 T e 1 ′ e 2 T e 2 ′ e 2 T e 3 ′ e 3 T e 1 ′ e 3 T e 2 ′ e 3 T e 3 ′ ] [ a 1 ′ a 2 ′ a 3 ′ ] ⟹ R a ′ ⃗ (1.2) \left[\begin{matrix} a_1\\ a_2\\ a_3 \end{matrix}\right] =\left[\begin{matrix} {e_1}^{T}{e_1}^{'}&{e_1}^{T}{e_2}^{'}&{e_1}^{T}{e_3}^{'}\\ {e_2}^{T}{e_1}^{'}&{e_2}^{T}{e_2}^{'}&{e_2}^{T}{e_3}^{'}\\ {e_3}^{T}{e_1}^{'}&{e_3}^{T}{e_2}^{'}&{e_3}^{T}{e_3}^{'} \end{matrix}\right] \left[\begin{matrix} {a_1}^{'}\\ {a_2}^{'}\\ {a_3}^{'} \end{matrix}\right]\Longrightarrow R\vec{a^{'}} \tag{1.2} a1a2a3=e1Te1e2Te1e3Te1e1Te2e2Te2e3Te2e1Te3e2Te

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值