常用匹配算法(借鉴别人文章总结的)

目前主流游戏的匹配算法介绍

皇室战争

对战模式:1v1
匹配机制:主要是通过奖杯数去匹配对手的,对战胜利的玩家将赢得失利玩家损失的奖杯数,在正常情况下,游戏会优先匹配杯数相差100以内的玩家进行对战。如果没有匹配的,则顺延选择相差较小的玩家进行对战。
如何防止刷分?
1v1由于需要的玩家数量较小(2名),就造成了刷分门槛低的情况。supercell的规则是:两个账号在完成与其他至少三名玩家对战之前,是无法相互匹配到的。这也就强制了你必须通过对战才能够涨杯数。

炉石传说

对战模式:1v1
匹配机制:
炉石的匹配机制在休闲玩法和天梯玩法上各有不同。同时系统会引入隐藏的玩家水平判断参数MMR(Matchmaking Ranking),以保证匹配玩家之间水平旗鼓相当。
据官方透露,MMR值是随时变动的数值,玩家每赢得一局比赛就会获得一定的MMR分数,打击败对手越强获得分数越高,击败对手越弱则获得分数越少。当玩家对局数量越多的时候,系统通过MMR值判断出来的玩家实力也就越精确。同时卡牌的强弱、稀有程度并不会影响MMR值。

1:休闲玩法
系统会优先给玩家匹配匹配到同水平段位的对手(1~60级)
2:天梯玩法
在天梯模式中,匹配机制分两种情况,如果天梯等级在25级~1级之内,系统会尽可能给玩家匹配同天梯等级的对手。当天梯等级到达1级以上的传说等级时,系统会再次引入MMR值,给玩家寻找同为传说等级且实力相当的对手。

这两种玩法在匹配人数较少的时间段,系统也会根据匹配时间来安排与玩家水平相近的不同等级的对手。

王者荣耀

对战模式:排位赛,匹配赛,人机对战等,里面都有1v1, 3v3, 5v5。
匹配机制:
基于ELO等级分的模式(根据玩家对战中各方面数据计算出的综合实力积分,该积分适用于个人也适用于多人团队),即尽可能安排双方胜率都最接近50%的对局,并在特定条件下做出匹配时间和玩家实力上一定程度的扩宽。
王者最近的更新加入了玩家的详细对局数据,并以此计算战力值和能力示意图,包括KDA(KDA就是:杀人(Kill)死亡(Death)助攻(Assist)按照一定比率来算的一个数值 其公式为(K+A)/ D 一般3为正常)、参战率、每分钟获得金币数、每分钟造成的英雄伤害、每局承受伤害、每局对建筑伤害。这些数据就是对玩家当前实力的综合计算结果,很有可能也会给匹配结果带来一定程度的影响。

匹配系统设计概述,目标,总结

匹配系统的目的例如以下,优先级从高到低:

  • 保护新手不被有经验的玩家虐;让高手局中没有新手。

  • 创造竞技和公平的游戏对局,使玩家的游戏乐趣最大化。

  • 无需等待太久就能找到对手进入游戏。

匹配系统尽其所能的匹配水平接近的玩家,玩家的水平是来自他们在此之前赢了谁以及他们对手的水平。当你战胜对手,系统会觉得你更强,当你输给对手,系统会觉得你更弱。尽管这对于某一局游戏并非那么的公平,可是长期来看,对于多局游戏是相当的公平:由于好的玩家总会对游戏结果造成正面的、积极的影响。

匹配是怎么完成的?

首先,系统将你放进适当的匹配池里——依据游戏模式(匹配模式、排位solo/双人、排位5人、其它模式等等)
然后,系统会尝试将匹配池里的人分到更细的匹配池里——5人组队 VS 5人组队,低等级新手 vs 其它一些低等级新手,如此这般。

当你在匹配池中,系统会开始尝试找到合适的配对,目标是撮合一个两方获胜机会都为50%的游戏。

第1步:确定你的实力:

假设你是solo,就直接使用你的个人匹配分(也就是elo值)
假设你是预先组队的,你的匹配分是你队伍的平均分。

第2步:确定你合适匹配对手:

首先,系统会基于你的rating值,给你匹配跟你很相近的玩家(设置一个正负偏差值)。系统会尝试平衡这个队伍,尽量使两方的获胜机会都为50%。在绝大多数时间,误差会在3%之内——类似50/50,49/51,48/52。如果匹配不到,系统会放宽匹配的条件,给你一些不是那么完美的匹配。

新手会得到一些特殊的保护,通常新手仅仅会匹配到其它新手(在成熟的server里,这个比例达到了99%+。除非这个新手和一个高级玩家朋友预先组队)

第3步:结果计算:

可以采用elo算法去计算你和对手的下一次积分。

假设你想知道ELO系统的理论,以及很多其它细节,你能够看看这:

http://en.wikipedia.org/wiki/Elo_rating_system

http://zh.wikipedia.org/wiki/ELO

https://www.zhihu.com/question/41011877

elo介绍
http://bbs.gameres.com/thread_228018_1_1.html

TrueSkill 介绍

http://www.cnblogs.com/baiting/p/5591614.html

### 文章推荐算法实现与优化 #### 1. 推荐系统的概述 推荐系统是一种信息过滤系统,用于预测用户对物品的兴趣并提供个性化建议。常见的应用场景包括电子商务网站的商品推荐、视频平台的内容推荐以及社交网络中的好友推荐。 #### 2. 基于协同过滤的方法 基于用户的协同过滤通过分析相似用户的行为来做出推荐。如果两个用户在过去有相似的选择,则认为他们在未来也会有相似的选择。这种方法可以进一步分为两种主要形式:基于邻域模型和矩阵分解方法[^1]。 对于基于邻域模型而言,计算用户之间的相似度是一个核心环节。常用的相似度量指标包括余弦相似性和皮尔逊相关系数。一旦确定了最接近的目标用户群体之后,就可以根据他们的偏好来进行商品或者服务项目的推荐操作。 而矩阵分解则是试图找到潜在因素空间,在这个低维的空间里面表示原始数据矩阵,并利用这些因子重建评分表从而完成预测工作。SVD(奇异值分解)、NMF(非负矩阵因式分解)等技术被广泛应用于该领域之中。 #### 3. 基于内容的推荐 不同于上述依赖历史行为记录的方式,基于内容的推荐侧重于理解和匹配项目本身的特征属性。比如书籍分类标签、电影演员导演名单或是音乐流派风格等等都可以作为描述对象特性的元数据参与建模过程。当新加入一位顾客时,只需考察其已知喜好即可迅速定位到可能感兴趣的新品列表之上;反之亦然——针对某件特定作品寻找具有相同品味的人群也变得轻而易举起来。 #### 4. 深度学习驱动下的混合型架构 近年来随着神经网络研究取得突破进展,越来越多的研究者尝试将传统机器学习手段同现代AI框架相结合构建更加高效精准可靠的智能引擎。例如AutoRec自动编码器能够很好地捕捉隐含模式规律;NeuMF神经协同过滤则巧妙融合了广义线性回归和支持向量机的优点特性;还有DSSM双塔结构语义哈希映射机制更是开创了一条崭新的解决路径。 除了以上提到的技术之外,还可以考虑引入其他先进理念如强化学习控制策略调整权重参数更新频率以期达到最优解状态;或者是借鉴生物启发式寻优理论像粒子群优化(PSO)[^1], 灰狼优化(GWO)[^2] 来改进现有求解流程使之更加快捷稳定收敛良好。 ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity def user_based_recommendation(user_item_matrix, target_user_id, k=5): """简单的基于用户的协同过滤推荐""" similarities = cosine_similarity(user_item_matrix) similar_users = np.argsort(-similarities[target_user_id])[:k] recommended_items = [] for user in similar_users: rated_items = set(np.where(user_item_matrix[user]>0)[0]) not_rated_by_target = set(range(len(user_item_matrix.T))) - \ set(np.where(user_item_matrix[target_user_id]>0)[0]) potential_recs = list(rated_items.intersection(not_rated_by_target)) if len(potential_recs)>0: recommended_items.extend(potential_recs) return list(set(recommended_items)) # 示例调用 user_item_data = [[5, 3, 0, 1], [4, 0, 0, 1], [1, 1, 0, 5], [1, 0, 0, 4], [0, 1, 5, 4]] user_item_matrix = np.array(user_item_data) print(user_based_recommendation(user_item_matrix, 0)) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值