深度学习环境配置- win10+Anoconda3-2.4.0+cuda8.0+TensorFlow-GPU+Pycharm2016测试Demo-GPU加速

前言

本来用的是Python2.7,但最近学习需要用到TensorFlow,TensorFlow支持windows,但tensorflow在windows下只支持python 3.5以上


Anacoda3-4.2.0安装

Anacoda3-4.2.0 Uses python 3.5下载:
https://repo.continuum.io/archive/Anaconda3-4.2.0-Windows-x86_64.exe

下载之后直接点击.exe文件安装即可,安装时注意勾选将Anacoda和python3.5添加到环境变量

安装完成后
这里写图片描述
Path中会自动添加:
这里写图片描述

此时conda和pip也添加到系统变量中了,可以直接使用命令(因为conda和pip在Scripts下)。


cuda8.0安装

cuda8.0

下载:https://developer.nvidia.com/cuda-downloads

下载下来后就正常安装就可以了。
这里写图片描述

cuDnn5.1

cuDnn库下载:https://developer.nvidia.com/rdp/cudnn-download

注意要对应你下载的cuda版本

下载后解压:
这里写图片描述
把文件对应放到cuda安装目录下的对应文件:
这里写图片描述

配置环境变量到PATH下
这里写图片描述


安装TensorFlow

查看是否切换到python3.5 工作环境

python --version

这里写图片描述

查看当前可按照TensorFlow版本

anaconda search -t conda tensorflow

这里写图片描述

使用pip安装tensorflow

pip3 install tensorflow-gpu

这里写图片描述

运行测试:(出错)
这里写图片描述

网上看了很多教程 说估计是TensorFlow与cuda版本不匹配

conda list查看了一下,装的是TensorFlow1.5

于是决定装个低版本试试

#卸载1.5版本
pip3 uninstall tensorflow-gpu

安装1.3

pip install --upgrade https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc0-cp35-cp35m-win_amd64.whl

Pycharm配置Anoconda3

这里写图片描述

创建程序:

#coding=utf-8
# @Author: yangenneng
# @Time: 2018-02-05 18:23
# @Abstract:测试tensorflow导入情况

# 引入 tensorflow 模块

import tensorflow as tf


#官方教程代码测试:
#Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
#Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#Runs the op.
print(sess.run(c))

这里写图片描述


用上GPU了

测试MNIST手写数字识别程序在GPU下执行:
程序:http://blog.csdn.net/yen_csdn/article/details/79268446
这里写图片描述
速度确实快了很多

使用Anaconda3和PyCharm来配置TensorFlow-GPU 2.4.0深度学习环境是一个相对简单的过程,我将分享我的经验。 首先,你需要确保已经在计算机上安装了Anaconda3和PyCharm。然后,你可以按照以下步骤进行配置: 1. 打开Anaconda Navigator,并创建一个新的虚拟环境。你可以选择Python 3.7版本,并命名环境为"tensorflow-gpu"。 2. 激活新环境后,在终端或命令提示符下输入以下命令来安装TensorFlow-GPU 2.4.0: ``` conda install tensorflow-gpu=2.4.0 ``` 3. 安装完成后,你可以通过以下命令验证TensorFlow-GPU是否正确安装: ``` python -c "import tensorflow as tf; print(tf.__version__)" ``` 如果输出显示为2.4.0,则说明TensorFlow-GPU已经成功安装。 4. 接下来,在PyCharm中打开一个新的项目。在项目设置中,选择已创建的虚拟环境"tensorflow-gpu"作为项目的Python解释器。 5. 在PyCharm的终端中,使用以下命令来安装GPU版本TensorFlow依赖项: ``` pip install tensorflow-gpu==2.4.0 ``` 6. 安装完成后,你可以编写和运行使用TensorFlow-GPU的代码了。 在配置过程中,可能会遇到一些问题。例如,TensorFlow-GPU要求计算机上安装了适当的显卡驱动程序,并且CUDA和cuDNN版本TensorFlow-GPU的要求相匹配。此外,如果你在安装过程中遇到任何问题,可以尝试升级或降级AnacondaPyCharmTensorFlow-GPU版本,以找到兼容的组合。 总之,通过Anaconda3和PyCharm配置TensorFlow-GPU 2.4.0深度学习环境是一项相对简单的任务。如果按照上述步骤操作,你应该能够成功地设置和使用TensorFlow-GPU来进行深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值