- 实验目的
通过实验,学会搭建人工智能开发环境。具体目标要求如下:
- 复习或学习掌握AI语言Python工具安装。
- 学习掌握AI的开发环境Anaconda平台的安装部署,并熟悉其用于Python虚拟环境管理的功能。
- 学习掌握PyCharm/Vscode等编程IDE的安装部署使用
- 学习掌握基于Jupyter lab的 notebook环境使用运行Python代码的方法。
- 学习Mo平台的使用,包括如何创建项目、管理数据集及进行模型训练。
- 学习掌握常用python库如pandas、numpy、matplotlib的使用。
- 实验内容
实验步骤(仔细阅读,按照步骤完成实验)
- Python安装
首先进入Python的官方网站(https://www.python.org/downloads/),在下图中选择对应系统进入python版本选择页面,下载适合的 Python 版本的安装程序。
python官网下载页面
- 下载完成后打开Python安装程序,按照安装向导的指示进行安装并截图。
已安装过
- 在cmd(Windows状态栏搜索cmd打开)中输入“Python --version”验证是否安装成功,若安装成功,将显示版本信息。若未显示版本信息,请检查环境变量是否设置无误。
- Anaconda安装部署
安装Anaconda时,具体步骤可能因Anaconda的版本和操作系统的不同还是会有所差异的,但总体流程是相似的,下面以windows为例。
(1)首先要从Anaconda的官方网站(https://www.anaconda.com/download/)下载windows版本,选择对应的Python版本,一般建议选最新的Python 3.x,然后下载相应的安装程序。
(2) 下载完成后打开安装包,按照安装向导的指示进行安装。
(3) 打开cmd,输入conda --version或conda -V命令来验证是否安装成功。若安装成功,将显示版本信息。
(4) 在应用中找到Anaconda Navigator并打开。
- Anaconda的使用(以windows为例)
3.1 虚拟环境的管理
在Anaconda Navigator左边栏选择Environments进入虚拟环境管理页面,如下图所示。在这里可以对虚拟环境进行创建、删除等,还可以对指定环境中的包进行管理。
虚拟环境的管理还可以使用conda命令在cmd中完成(mac系统在终端中完成)
- 使用conda命令创建虚拟环境,命令如下,其中myenv为自定义的虚拟环境名称。conda create -n myenv python=3.12.0
- 查看虚拟环境列表,验证虚拟环境是否创建成功,命令如下:conda env list
- 切换到指定虚拟环境,并在此状态下查看虚拟环境列表
conda activate myenv
- 用conda 安装 python包,以numpy为例:conda install numpy
- 退出虚拟环境
conda deactivate
- 移除指定虚拟环境conda remove -n myenv --all
3.2 IDE安装
PyCharm和Visual Studio Code均为编程IDE,同学们二选一(两个软件的具体配置还需要同学们自行网上学习,大家要善于利用大语言模型!搜索引擎最好用Google或者Bing),对应截图也只需一个软件的图片。
- Pycharm安装。去到PyCharm官方下载页面(MacOS注意更改对应平台),需要将页面往下滑看到PyCharm Community Edition,点击下载(PyCharm Professional需要付费,学校正版软件平台也有对应授权方法,同学们视自己情况选择不同版本安装)。参考配置
安装后启动软件并截图:
- Visual Studio Code安装。去到官方下载页面(Windows平台选择User Installer,MacOS平台选择.zip,注意处理器类别,Windows通常选择x64,MacOS通常选择Apple Silicon。参考配置链接:quick start、getting started、Python in VScode、Python Envrionments
安装后启动软件并截图:
3.3 Jupyter Notebook
Jupyter notebook是一个基于网页的交互式计算环境,其优点是交互式强,易于可视化,尤其适用于需要频繁修改、实验的场景,比如数据分析、测试机器学习模型等。
- 进入Anaconda Navigator,选择需要运行Jupyter notebook的虚拟环境,找到Jupyter notebook点击下方的“Install”按钮进行安装。
- 安装完成后点击“Launch”按钮就可以打开Jupyter notebook。打开后进行截图。
- Mo平台的使用
首先进入官网(Mo-人工智能教学实训平台,在线学习Python、AI、大模型、AI写作绘画课程,零基础轻松入门),用浙大通行证登陆,点击右上角“我的学习”,点击“项目”,找到本课程示例项目“人工智能通识 A - GGC”。
点击右侧Fork,即可将其纳入本人私有项目中。
在Mo-Lab环境中,在文件一栏中找到下图所示文件,并双击点开。
仔细阅读,学习如何使用Mo平台开发项目。
可以在coding_here.ipynb中学习如何使用Jupyter notebook,试着使用红框中的功能键,写入一些代码后运行并截图。
5. Python科学计算常用包的使用
以下用到的Python包均可通过Anaconda Navigator下载或者在命令行中用pip命令下载。
下面演示在命令行中创建一个虚拟环境并进入到该虚拟环境,最后下载需要的Python包。
- 在命令行中输入conda create -n xxx创建虚拟环境。xxx为虚拟环境名,同学们可自行决定。
- 在命令行中输入conda activate xxx进入虚拟环境(这一步很重要)。
- 在命令行中输入conda install pip来安装pip包管理器。
- 在命令行中输入pip install pandas numpy matplotlib notebook来安装Python包。若下载速度较慢,可转用国内镜像源。
(这里的some-packages为你想下载的包名,设为默认即代表以后下载Python包无须指定-i Simple Index也可从清华源下载)。
- 在命令行中输入jupyter notebook,此时浏览器应自动跳转到jupyter界面,若跳转失败或需要输入token,可在命令输出中找到url以及token。进入jupyter界面后选择自己想存放代码的文件夹并新建notebook文件。
- 若要退出虚拟环境,输入conda deactivate。或者直接关闭命令行。
- 对于每个Python包的使用,同学们可以参考官方文档或者求助于大语言模型。
以下作业不需要提供代码!!!提供对应代码截图以及运行结果即可。
5.1 Python数据分析处理工具库Pandas的使用操作。quick-start
import pandas as pd
data = {
"products" : ["Phone", "Laptop","Pad", "Earphone", "Smart Watch",
"Camera", "Television", "Speaker", "Printer", "Router"],
"Sales" : [150, 80, 90,200,120, 60,50,130,70,40],
"Prices($)" : [3000, 6000, 2000, 800, 1500, 5000, 4000, 1500, 1000, 600],
"Sold Date" : pd.date_range(start="2025-01-01", periods=10, freq='D')
}
df = pd.DataFrame(data)
print(df)
将上述代码复制粘贴到notebook文件中,并在Jupyter notebook中实现:
(1)筛选出销售量大于 100 的产品
- 按销售量从大到小排序并输出
(3)计算所有产品的平均销售量
(4)计算每种产品的总销售额,并添加总销售额为新列
4.2 Python数值计算科学计算库Numpy使用操作。quick start、
在Jupyter notebook中实现。
示例:创建一个2x12大小的符合标准正态分布的随机矩阵,对其所有元素乘10,再进行下取整操作。
- 创建一个从1到20 的NumPy 一维数组,并筛选出偶数
- 计算并输出一维数组的均值、标准差、最大值、最小值
- 任意创建一个NumPy 二维数组,然后进行形状变换
- 再创建一个二维数组(注意如何设定形状才能进行矩阵乘法),与上面的二维数组进行矩阵乘法运算
- 生成4行3列的随机数组
4.3 Python可视化工具Matplotlib的简单使用。quick start
(1)示例1 绘制余弦函数cos(x)
在Jupyter Notebook中实现。
(1)
画出一个Lorenz Attrator(同学们可以进行一些自由探索:选择其他的attrators,更改figure的朝向,线条的粗细、颜色等,甚至画出动画。