循环神经网络--RNN

RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。语言模型是指:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。比如:

我昨天上学迟到了,老师批评了__

利用RNN根据前面的信息推测出后面的词语。在上面例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。


这里写图片描述

图1 RNN结构图

基本循环神经网络

下图是一个简单的循环神经网络如,它由输入层x、一个隐藏层s和一个输出层o组成:


这里写图片描述

图2 RNN结构简化图

x是一个向量,它表示输入层的值;s是一个向量,它表示隐藏层的值;o也是一个向量,它表示输出层的值;U是输入层到隐藏层的权重矩阵;V是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

把上面的图展开,循环神经网络如下图所示:


这里写图片描述

图3 RNN结构时间展开图

网络在t时刻接收到输入 xt x t ,隐藏层的值是 st s t ,输出值是 ot o t st s t 的值不仅仅取决于 xt x t ,还取决于 st1 s t − 1 。可以用下面的公式来表示循环神经网络的计算方法:

ot=g(Vst)(1) (1) o t = g ( V s t )

st=f(Uxt+Wst1)(2) (2) s t = f ( U x t + W s t − 1 )

如果把公式2代入公式1中,可以得到:

ot=g(Vst)=g(Vf(Uxt+Wst1))(1) (1) o t = g ( V s t ) = g ( V f ( U x t + W s t − 1 ) )

=g(Vf(Uxt+Wf(Uxt1+Wst2)))(2) (2) = g ( V f ( U x t + W f ( U x t − 1 + W s t − 2 ) ) )

=g(Vf(Uxt+Wf(Uxt1+Wf(Uxt2+Wst3))))(3) (3) = g ( V f ( U x t + W f ( U x t − 1 + W f ( U x t − 2 + W s t − 3 ) ) ) )

=g(Vf(Uxt+Wf(Uxt1+Wf(Uxt2+Wf(Uxt3+...)))))(3) (3) = g ( V f ( U x t + W f ( U x t − 1 + W f ( U x t − 2 + W f ( U x t − 3 + . . . ) ) ) ) )

从上面可以看出,循环神经网络的输出值 ot o t ,是受前面历次输入值 xt x t xt1 x t − 1 xt2 x t − 2 xt3 x t − 3 、……的影响。

双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,比如下面这句话:

我的手机坏了,我打算__一部新手机。

如果我们只看横线前面的词,手机坏了,那么我是打算维修还是换一部新的?这都无法确定。但如果我们看到了横线后面的词是『一部新手机』,那么,横线上的词填『买』的概率就大得多了。

基本循环神经网络是无法对此进行建模的,因此,我们需要双向循环神经网络来实现。如下图所示:


这里写图片描述

图4 双向循环神经网络

我们先考虑上图中 y2 y 2 的计算。从上图可以看出,双向卷积神经网络的隐藏层要保存两个值,一个A参与正向计算,另一个值A’参与反向计算。最终的输出值 y2 y 2 取决于 A2 A 2 A2 A 2 ′ 。其计算方法为:

y2=g(VA2+VA2)(4) (4) y 2 = g ( V A 2 + V ′ A 2 ′ )

A2 A 2 A2 A 2 ′ 则分别计算:

A2=f(WA1+UX2)(5) (5) A 2 = f ( W A 1 + U X 2 )

A2=f(WA3+UX2)(6) (6) A 2 ′ = f ( W ′ A 3 ′ + U ′ X 2 )

现在,我们已经可以看出一般的规律:正向计算时,隐藏层的值 st s t st1 s t − 1 有关;反向计算时,隐藏层的值 st s t ′ st1 s t − 1 ′ 有关;最终的输出取决于正向和反向计算的和。双向循环神经网络的计算方法如下:

ot=g(Vst+Vst)(7) (7) o t = g ( V s t + V ′ s t ′ )

st=f(Uxt+Wst1)(8) (8) s t = f ( U x t + W s t − 1 )

st=f(Uxt+Wst+1)(9) (9) s t ′ = f ( U ′ x t + W ′ s t + 1 ′ )

其中 xt x t 表示输入层的值; st s t 表示正向隐藏层的值; st s t ′ 表示反向隐藏层的值; ot o t 表示输出层的值; U U 输入层到正向隐藏层的权重矩阵;V正向隐藏层到输出层的权重矩阵; U U ′ 输入层到反向隐藏层的权重矩阵; V V ′ 反向隐藏层到输出层的权重矩阵; W W 是隐藏层上一次的值st1作为这一次的输入的权重矩阵; W W ′ 是隐藏层下一次的值 st+1 s t + 1 作为这一次的输入的权重矩阵。

从上面三个公式我们可以看到,正向计算和反向计算不共享权重,也就是说U和U’、W和W’、V和V’都是不同的权重矩阵。

上面提及的循环神经网络只有一个隐藏层,我们当然也可以堆叠两个以上的隐藏层,这样就得到了深度循环神经网络。如下图所示:


这里写图片描述

图5 深度循环神经网络

我们把第i个隐藏层的值表示为 s(i)t s t ( i ) s(i)t s t ′ ( i ) 来表示,则深度循环神经网络的计算方式可以表示为:

ot=g(V(i)s(i)t+V(i)s(i)t)(10) (10) o t = g ( V ( i ) s t ( i ) + V ′ ( i ) s t ′ ( i ) )

s(i)t=f(U(i)s(i1)t+W(i)s(i)t1)(11) (11) s t ( i ) = f ( U ( i ) s t ( i − 1 ) + W ( i ) s t − 1 ( i ) )

s(i)t=f(U(i)s(i1)t+W(i)s(i)t+1)(12) (12) s t ′ ( i ) = f ( U ′ ( i ) s t ( i − 1 ) + W ′ ( i ) s t + 1 ′ ( i ) )

...(4) (4) . . .

s(1)t=f(U(1)xt+W(1)s(1)t1)(13) (13) s t ( 1 ) = f ( U ( 1 ) x t + W ( 1 ) s t − 1 ( 1 ) )

s(1)t=f(U(1)xt+W(1)s(1)t+1)(14) (14) s t ′ ( 1 ) = f ( U ′ ( 1 ) x t + W ′ ( 1 ) s t + 1 ′ ( 1 ) )

循环神经网络的训练算法:BPTT(Back Propagation Through Time)

BPTT算法是针对循环层的训练算法,它的基本原理和BP算法是一样的,也包含同样的三个步骤:

  1. 前向计算每个神经元的输出值;
  2. 反向计算每个神经元的误差项值 δj δ j ,它是误差函数E对神经元j的加权输入 netj n e t j 的偏导数;
  3. 计算每个权重的梯度。

最后再用随机梯度下降算法更新权重。

详细公式推导见参考文献1,我并没有明确的研究公式,只是理解了RNN的基本原理。

参考资料:

1.零基础入门深度学习(5) - 循环神经网络
2.当我们在谈论 Deep Learning:RNN 其常见架构
3.RNN以及LSTM的介绍和公式梳理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值