2024深圳杯东三省A题详细思路代码文章成品分享:多个火箭残骸的准确定位

多个火箭残骸的准确定位

现代火箭发射中多级火箭完成任务后的各级并坠落回地面,这些分离的部件在坠落过程中,一旦穿过音障,就会产生音爆,这是一种强烈的声波。地面或空中的监测设备可以捕捉这些音爆,通过分析这些声波到达不同监测点的时间差,可以反推出音爆的源头位置。本文基于优化模型对空中火箭残骸音爆事件进行定位的多个策略。
对于单个音爆事件的定位,建立了一个基于监测设备接收到的音爆时间和设备的三维坐标信息的代数模型以及优化模型。该模型通过最小化预测音爆时间与实际观测时间之差的绝对值之和来精确定位音爆的三维位置和时间。此外,引入了粒子群优化(PSO)算法来解决此优化问题。通过对比可知优化模型效果更佳。
针对多个残骸产生的音爆事件,文中提出了一个更复杂的优化模型,需要处理更多的未知变量和音爆时间的组合。该模型同样采用了损失函数最小化策略,但增加了处理多个残骸和相关音爆事件匹配的复杂性,模型误差已收敛至10的-3次方量级。
进一步地,论文考虑了音爆事件时间可能存在的微小差异以及观测数据可能带来的误差,并对原有的损失函数进行了调整,加入了惩罚项来处理可能的时间偏差和观测误差,以增强模型的实用性和鲁棒性,并引入带有逃逸算子的海洋捕食者算法以提高求解的精度与速度,这种算法优于之前的PSO算法,模型误差已收敛至10的-11次方量级。
最后,论文通过模拟数据测试了这些模型的效果,并讨论了不同算法在实际应用中的性能和适用性。整体上,该研究为通过监测设备数据精确预测并定位高速移动的空中物体提供了有效的数学模型和解决方案。

请添加图片描述

多个火箭残骸的准确定位
目录
一、问题背景 3
二、问题重述 5
三、问题分析 7
四、模型假设 9
五、模型的建立与求解 10
5.1问题一模型的建立与求解 10
5.1.1数据分析 10
5.1.2问题一代数模型 12
5.1.3问题一粒子群优化模型 14
5.1.4问题一粒子群优结果 16
5.2问题二三模型的建立与求解 18
5.2.1数据分析 18
5.2.2问题二数学模型 18
5.2.3问题三数学模型 20
5.2.4问题二三模型求解 20
5.2.5问题二三思考 22
5.3问题四模型的建立与求解 23
5.3.1数据分析与处理 23
5.3.2 问题四模型建立 24
5.3.3 问题四模型PSO求解 25
5.3.4 问题4模型LEO-MPA求解 27
六、模型总结 31
1模型优点 31
2模型缺点 31
七、模型推广 32

下面我将给出四个问题的详细分析
问题分析
问题1:单个残骸音爆位置定位的解决思路
在理论上,要确定一个点(残骸音爆发生的位置)在三维空间中的坐标和时间,至少需要四个监测设备。每个设备提供的音爆到达时间可以转化为到音爆源的距离,从而构成一个以该设备为球心、到达时间乘以声速为半径的球面。理论上,四个这样的球面应该在音爆源处相交。
数学模型:使用非线性最小二乘法求解,通过优化计算残骸的位置(经度、纬度、高程)和音爆时间,使得理论计算的音爆到达时间与实测时间的差异最小。
无解或多解问题:如果选择的四台设备的数据无解(如球面不相交或交点不唯一),可能是因为测量误差或设备选择不合适。这时可以采取以下措施:
重新选择设备组合:更换不同的设备组合进行计算,尝试找到一个稳定的解。
增加冗余:使用超过四台设备的数据进行计算,这样可以通过多余的数据来减少测量误差的影响,增加解的稳定性
**进阶算法:**采用粒子群算法对问题进行优化求解

问题2和3:多个残骸音爆信号区分与定位的解决思路
当场景复杂化至多个音爆同时发生时,问题变得更为复杂,因为每个设备可能接收到多个不同残骸产生的音爆。
信号区分:首先需要区分每个设备接收到的多个音爆分别属于哪个残骸。这可以通过聚类分析来实现,比如基于时间的聚类,将相近时间的音爆归为一组,预测它们可能来源于同一残骸。
多源定位:接下来使用类似问题1的方法,但需为每个残骸单独应用,处理的数据量和复杂性大幅增加。可能需要运用更复杂的数学模型和算法,如多目标优化。
误差分析与模型验证:需要在实际数据上测试模型的有效性,通过模拟数据(问题3)来调整模型参数,确保算法可以在接收到复杂信号时仍然稳定工作。
进阶算法:针对问题采用的检测器数量进行深入分析,体现思考量。

问题4:模型修正与误差优化的解决思路
考虑到监测设备的时间记录可能存在误差,需要对前述模型进行修正:
引入误差模型:考虑到时间记录的不确定性,可以在模型中加入时间误差项,如假设时间记录误差符合某种统计分布(如正态分布)。
优化算法调整:调整优化算法以适应误差的存在,可能包括使用鲁棒的优化技术或增加算法中的误差容忍度。
多数据融合:利用更多数据或增加设备的测量次数,通过统计方法降低误差的影响,提高定位的精确性。
进阶算法:

同时采用粒子群算法和带有局部逃逸算子的海洋捕食者算法(Local Escaping Operator- Marine Predators Algorithm,LEO-MPA)算法对问题进行优化。
该算法是一种改进的海洋捕食者算法(Marine Predators Algorithm, MPA),旨在解决优化问题。原始的MPA算法在求解优化问题时表现出了不俗的性能,但由于探索和开发能力之间的不平衡,它往往会过早地收敛。为了克服这一缺点,LEO-MPA引入了一个新的局部逃逸算子(Local Escaping Operator, LEO)
详细内容请看评论区~

  • 7
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
A-人才吸引力评价模型研究 在世界各国和全国各地都加大争夺人才的背景下,一个城市要保持其竞争活力和创新力,必须与时俱进地但不盲目地调整相关人才吸引政策。2018年深圳市将加大营商环境改革力度作为一项重要工作,以吸引更多优秀的高新企业和优秀的人才。 吸引人才最关键的是:符合人才的理想,满足人才的需求和愿望。对大多数人来说,首先关心的是“发展前景”:就业实体及其所在城市的前景,不光当前好,未来也不会很快衰落,毕竟人是要考虑“迁移成本”的;其次是收入(报酬或盈利),这方面有绝对(同行业)的和相对(同地域,平价购买力)的两种考量;再次是环境方面的因素:治安,交通,污染,教育、医疗,购物,等等。目前,这方面定性讨论多,定量研究少;定量研究中单因素的多,综合考虑的少;静态考量多,动态(时变)考量少,考虑“不可比”条件的更少。“少”的原因主要是缺乏合适的“数学模型”,使得结论既缺乏说服力,也缺乏可验证性。 你的团队的任务是: 1、通过收集相关数据、建立数学模型,量化地评价深圳市的人才吸引力水平,并尝试就深圳“加大营商环境改革力度若干措施”对人才吸引力水平的影响做出量化评价。 2.针对具体人才类别,深入分析比较深圳市与其他同类城市(如广州、杭州、厦门、苏州等)在人才吸引力上的优势与不足,给出有效提升人才吸引力的可行方案。 3.针对深圳南山区的经济技术发展特点和相关人才政策,同时考虑人才在各个发展阶段的动态需求,量化地评价深圳南山区人才吸引力水平。
很抱歉,我无法提供2023深圳杯东三省数学建模ABC的具体思路代码。根据您引用的内容,第一条引用是关于影响城市居民身体健康因素的分析,第二条引用是关于初步选建议及思路,第三条引用是关于2020年东三省数学建模A的论文展示和包含的问解决 Matlab 和 Python 代码。由于我无法获取具体的目内容和考察要求,所以无法提供关于2023深圳杯数学建模ABC思路代码。建议您参考相关的数学建模教材和资料,或咨询老师和同学获得更准确的答案。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2023深圳杯东三省数学建模ABC思路代码](https://blog.csdn.net/smppbzyc/article/details/131966041)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [2020年东三省数学建模A新冠病毒疫情论文](https://download.csdn.net/download/qq_40957277/19779291)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千千小屋grow

感谢支持,干杯

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值