天梯赛 L2-018
这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i]是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
思路
-
很明显的一道模拟题
- 记被除式为f(x)=a nx p1+a n-1x p2+……+a 2x pi-1+a 1x pi,除式为g(x)=b mx q1+b m-1x q2+……+b 2x qj-1+b 1x qj
- 1: 每次将除式与被除式对齐(乘以除式与被除式次数最高,系数非零的项的次数差记为d)
- 2: 计算系数差k=a n/b n f(x)-k*g(x)*x d
- 重复1,2直到不能除式系数比被除式大为止 坑:
- m不一定比n小,所以肯能出现商为0的情况(QAQ也就我这样的懒癌晚期才懒得给商加判断了吧)
-
系数为0.0 的判断条件是
|x|<0.05
(应该不会有人和我一样判断0.1吧)
AC代码
#include<bits/stdc++.h>
using namespace std;
//#define int long long
#define fo(i,a,b) for(int i=a;i<b;i++)
#define lop(i,a,b) for(int i=a;i<=b;i++)
#define QAQ(vec,len) cout<<"test\n"; for(int i=0;i<=len;i++){cout<<vec[i]<<" ";}cout<<endl;
#define MX 10007
double a[MX],b[MX];
double res[MX];
int N,M,amx=-1,bmx=-1;
int main(){
cin>>N;
fo(i,0,N){//输入被除式
int pos;cin>>pos;
if(i==0) amx=pos;
cin>>a[pos];
}
cin>>M;
fo(i,0,M){//输入除式
int pos;cin>>pos;
if(i==0) bmx=pos;
cin>>b[pos];
}
for(int i=amx;i>=bmx;i--){//计算
if(a[i]==0) continue;
double k=a[i]/b[bmx];
int dif=i-bmx;
res[dif]=k;//商
for(int j=bmx-1;j>-1;j--){
a[j+dif]-=k*b[j];
}
// QAQ(a,amx);
}
int sum=0;
for(int i=amx-bmx;i>-1;i--){//统计商中多项式的数量
if(fabs(res[i])>=0.05) sum++;
}
if(!sum)cout<<"0 0 0.0\n";
else {
cout << sum << " ";
for (int i = amx - bmx; i > -1; i--) {
if (fabs(res[i]) < 0.05) continue;
printf("%d %.1f", i, res[i]);
if (--sum) cout << " ";
}
cout << endl;
}
for(int i=bmx-1;i>-1;i--) {//统计余式中多项式的数量
if(fabs(a[i])>=0.05) sum++;
}
if(!sum)cout<<"0 0 0.0\n";
else{
cout<<sum<<" ";
for(int i=bmx-1;i>-1;i--){
if(fabs(a[i])<0.05) continue;
else{
printf("%d %.1f",i,a[i]);
if(--sum)cout<<" ";
}
}
}
return 0;
}