天梯赛 L2-030
2018年世界杯,冰岛队因1:1平了强大的阿根廷队而一战成名。好事者发现冰岛人的名字后面似乎都有个“松”(son),于是有网友科普如下:
冰岛人沿用的是维京人古老的父系姓制,孩子的姓等于父亲的名加后缀,如果是儿子就加 sson,女儿则加 sdottir。因为冰岛人口较少,为避免近亲繁衍,本地人交往前先用个 App 查一下两人祖宗若干代有无联系。本题就请你实现这个 App 的功能。
输入格式:
输入首先在第一行给出一个正整数 N(1<N≤105),为当地人口数。随后 N 行,每行给出一个人名,格式为:名 姓(带性别后缀)
,两个字符串均由不超过 20 个小写的英文字母组成。维京人后裔是可以通过姓的后缀判断其性别的,其他人则是在姓的后面加m
表示男性、f
表示女性。题目保证给出的每个维京家族的起源人都是男性。
随后一行给出正整数 M,为查询数量。随后 M 行,每行给出一对人名,格式为:名1 姓1 名2 姓2
。注意:这里的姓
是不带后缀的。四个字符串均由不超过 20 个小写的英文字母组成。
题目保证不存在两个人是同名的。
输出格式:
对每一个查询,根据结果在一行内显示以下信息:
若两人为异性,且五代以内无公共祖先,则输出` Yes`;
若两人为异性,但五代以内(不包括第五代)有公共祖先,则输出 `No`;
若两人为同性,则输出 `Whatever`;
若有一人不在名单内,则输出 `NA`。
所谓“五代以内无公共祖先”是指两人的公共祖先(如果存在的话)必须比任何一方的曾祖父辈分高。
输入样例:
15
chris smithm
adam smithm
bob adamsson
jack chrissson
bill chrissson
mike jacksson
steve billsson
tim mikesson
april mikesdottir
eric stevesson
tracy timsdottir
james ericsson
patrick jacksson
robin patricksson
will robinsson
6
tracy tim james eric
will robin tracy tim
april mike steve bill
bob adam eric steve
tracy tim tracy tim
x man april mikes
输出样例:
Yes
No
No
Whatever
Whatever
NA
思路
题目类型:模拟
- 先输入数据,根据名字末尾的字母判断性别,顺带可以将末尾的多余字母去了。因为后续要根据下标来判断性别和父节点,可以用unordered_map来建立字符串和节点下标的映射
- 根据输入的数据来确定父节点下标
- 性别和不存在的人可以直接输出,要遍历A和B全部的祖先来确定他们没有五代以内的关系
坑:一定要注意,五代以内是单方面的,如A的第100代祖先和 B的爷爷的爸爸是同一祖先,也是属于五代以内(若他是B的爷爷的爷爷是第四代祖先,五代外输出YES)
附上一篇优质题解->戳这儿
另外吐槽一下,说好的父性制度,为什么能随妈姓
AC代码
#include<bits/stdc++.h>
using namespace std;
//#define int long long
#define fo(i,a,b) for(int i=a;i<b;i++)
#define lop(i,a,b) for(int i=a;i<=b;i++)
#define QAQ(vec) for(int i=0;i<N;i++){cout<<vec[i]<<" "<<endl;}cout<<endl;
#define test(a) cout<<"test: "<<a<<endl;
#define MX 100007
int N,M;
bool sex[MX];//0->male 1->female
string temp,fn,sn;//second_name
vector<string> fname;
unordered_map<string,int> n2i;//name->idx
vector<int> fa;//父节点编号
int main(){
std::ios::sync_with_stdio(false);
cin>>N;
fa=vector<int>(N,-1);
fo(i,0,N){
cin>>fn>>sn;
n2i[fn]=i;//自己的编号
if(sn.back()=='m'){//取性别
sex[i]=0;
sn.pop_back();
fa[i]=-2;//非维京人没有爸妈
}else if(sn.back()=='f'){
sex[i]=1;
sn.pop_back();
fa[i]=-2;//非维京人没有爸妈
}else if(sn.back()=='n'){
sex[i]=0;
fo(j,0,4) sn.pop_back();
}else{
sex[i]=1;
fo(j,0,7) sn.pop_back();
}
fname.emplace_back(sn);
}
//找爸爸
fo(i,0,N){
if(fa[i]==-2) continue;
fa[i]=n2i[fname[i]];
}
cin>>M;
fo(i,0,M){//按下标判断
string A,B;
cin>>A>>temp>>B>>temp;
if(n2i.find(A)==n2i.end()||n2i.find(B)==n2i.end()){
cout<<"NA"<<endl;continue;
}
if(sex[n2i[A]]==sex[n2i[B]]){
cout<<"Whatever"<<endl;continue;
}
int a=n2i[A],b=n2i[B];
map<int,int> st;
int cnt=0;
while(a>=0){
st[a]=cnt;
cnt++;
a=fa[a];
}
cnt=0;
bool f= true;
while(b>=0){
if(st.find(b)!=st.end()) {//有共同祖先
if(st[b]>=4&&cnt>=4) f=true;
else f=false;
break;
}
cnt++;
b=fa[b];
}
if(f) cout<<"Yes\n";
else cout<<"No"<<endl;
}
return 0;
}