Maximum Subarray && 动态规划详解

题目链接

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

解题思路:

        这是一道非常经典的动态规划的题目,用到的思路在别的动态规划题目中也很常用,所以我们以后称为”局部最优和全局最优解法“。
        基本思路是这样的:  在遍历每一步中,我们都要维护两个变量,一个是全局最优值,就是到当前元素为止最优的值;一个是局部最优值,就是必须包含当前元素的最优的值。
        接下来我们说说动态规划的递推式(这是动态规划最重要的步骤,递归式出来了,基本上代码框架也就出来了)。假设我们已知第i步的global[i](全局最优)和local[i](局部最优),那么第i+1步的表达式是:
local[i+1]=Math.max(local[i]+A[i], A[i]),就是局部最优值是一定要包含当前元素的,如果local[i]是负的,那么加上他就不如不加,所以不然就是直接用A[i]。
        有了当前一步的局部最优,那么全局最优值就是当前的局部最优或者还是原来的全局最优。即:global[i+1]=Math(local[i+1],global[i])

        接下来我们分析一下复杂度,时间上只需要扫描一次数组,所以时间复杂度是O(n)。空间上我们可以看出表达式中只需要用到上一步local[i]和global[i]就可以得到下一步的结果,所以我们在实现中可以用一个变量来迭代这个结果,不需要是一个数组,也就是如程序中实现的那样,所以空间复杂度是两个变量(local和global),即O(2)=O(1)。

python3代码实现:

class Solution:
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        # 用来维护局部最优解和全局最优解
        local_v, global_v = nums[0], nums[0]
        for v in nums[1:]:
            local_v = max(v+local_v, v)
            global_v = max(local_v, global_v)
        return global_v

在这里插入图片描述

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

. . . . .

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值