
人工智能
. . . . .
越努力越幸运!
展开
-
支持向量机 SVM
一. SVM思想 图a假图a中设圈出的红圈和篮圈都是训练数据,而紫色分割线是我们训练出来的模型。那么这个模型就会存在很大问题,比如,新来一个A点,根据这条线的分割,就会把A点归类到蓝色一边,然而,真实情况是这个A点离红色的点更近,那么这就造成了预测的失误,这是因为这个决策边界没有很好的泛化能力。为了解决这个问题,所以SVM来...原创 2020-03-11 01:00:40 · 163 阅读 · 0 评论 -
CPU、GPU使用情况查看以及各个参数含义
1. Linux下查看CPU和GPU使用情况本文记录了如何在Linux系统(以Ubuntu 16.04为例)查看电脑的GPU和CPU使用情况,包括命令和查询得到的界面。更新于2018.10.18。CPU使用情况查看动态查看打开终端,输入:top即可看到实时的CPU使用情况,如下图所示:按Ctrl+C退出查看。查看版本top -h即可看到当前procps-ng的版本。GP...转载 2018-12-13 16:48:17 · 15761 阅读 · 4 评论 -
ubuntu下安装tensorflow-gpu
首先说明:实验室的服务器已经配置好了NVIDIA的环境,所以我只在自己的账户下做了如下配置:1. 首先下载anacon3wget + 下载链接URL + 想要的版本号例如:wget + https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ + Anaconda3-5.2.0-Linux-x86_64.shwget https://mi...原创 2018-12-13 19:14:24 · 408 阅读 · 0 评论 -
tensorflow查看电脑的CPU和GPU
1、查看电脑GPU和CPUimport osfrom tensorflow.python.client import device_libos.environ["TF_CPP_MIN_LOG_LEVEL"] = "99" if __name__ == "__main__": print(device_lib.list_local_devices())2.指定C原创 2018-12-13 19:34:40 · 1132 阅读 · 2 评论 -
Linked List Cycle
题目链接python代码实现:# Definition for singly-linked list.# class ListNode(object):# def __init__(self, x):# self.val = x# self.next = Noneclass Solution(object): def hasCyc...原创 2018-12-24 15:25:39 · 176 阅读 · 0 评论 -
opensmile在Mac上安装--记录
opensmile官网下载opensmile2.3.0安装所需编译依赖$brew install automake$brew install autoconf$brew install libtool$brew install m4由于Mac系统提供了m4,所以不需要安装,只需要配置环境变量即可。$brew install gcc安装...原创 2019-03-11 14:26:32 · 702 阅读 · 1 评论 -
通过librosa库进行语音特征的提取
librosa官网一. librosa的安装pip3 install librosa***注意:**librosa依赖很多其他东西,下载的时候需要开启代理,否则安装失败二. 读取音频说明:音频采样率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。在当今的主流采集卡上,采样频率一般共分为11025Hz、22050Hz、24000Hz、44100Hz、...原创 2019-10-31 08:44:47 · 2709 阅读 · 1 评论 -
浅谈 傅里叶变换
傅里叶变换是一种信号分析方法,让我们对信号的构成和特点进行深入的、定量的研究。把信号通过频谱的方式(包括幅值谱、相位谱和功率谱)进行准确的、定量的描述。转自:傅里叶变换就是这么简单,你学会了吗?学习傅里叶变换需要面对大量的数学公式,数学功底较差的同学听到傅里叶变换就头疼。事实上,许多数学功底好的数字信号处理专业的同学也不一定理解傅里叶变换的真实含义,不能做到学以致用!事实上,傅里叶变换的...转载 2019-03-18 20:34:18 · 2811 阅读 · 0 评论 -
记录通过librosa库进行语谱图的生成
librosa官网一. librosa的安装pip3 install librosa***注意:**librosa依赖很多其他东西,下载的时候需要开启代理,否则安装失败二. 读取音频说明:音频采样率是指录音设备在一秒钟内对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。在当今的主流采集卡上,采样频率一般共分为11025Hz、22050Hz、24000Hz、44100Hz、...原创 2019-04-18 19:30:02 · 7307 阅读 · 1 评论 -
facenet
确定自己使用的TensorFlow是GPU版本还是CPU版本?原创 2018-09-06 10:34:23 · 1331 阅读 · 1 评论 -
Ubuntu下有关显存的命令
这两天在跑一个深度学习的算法,用的GeForce 1080 , 发现显存不足,所以需要查看一下显存的使用情况watch -n 1 nvidia-smi # 每隔1秒显示一次变化Ubuntu下有关显存的命令...转载 2018-09-08 11:33:01 · 530 阅读 · 0 评论 -
Numpy 中的 shuffle VS permutation
来自转载转载 2018-07-16 13:16:35 · 270 阅读 · 0 评论 -
tf.zeros()的使用
官网定义的结构为:tf.zeros( shape, dtype=tf.float32, name=None)shape代表形状,也就是1纬的还是2纬的还是n纬的数组。 下面看图说话:1. 一维数组里放一个值import tensorflow as tfres = tf.random_uniform((4, 4), -1, 1)res2 = tf....原创 2018-07-10 10:11:45 · 42239 阅读 · 0 评论 -
关于kNN算法的更多思考
kNN算法是一种思想简单的分类算法,即计算预测结点距离它最近的k个结点,然后在这k个结点中看看属于哪个类别数量更多一些,就把它归为那一类。 但是,我们忽略了一个问题,那就是距离的权重,如下图所示:我们应该把它归为哪一类呢?我们可以考虑把距离的倒数作为权重,即:红色距离绿色的权重为1/1=1,蓝色距离绿色的距离为1/3+1/4 = 7/12。 而1 > 7/12,所以应该...原创 2018-07-16 16:33:21 · 810 阅读 · 0 评论 -
ML学习中的召回率、准确率、精确率
ML学习中的召回率、准确率、精确率1. 召回率召回率(Recall Rate,也叫查全率),召回率是针对我们原来的样本而言的,是检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率;2. 准确率(又称正确率、精确率)精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是对的。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),...原创 2018-07-06 15:53:48 · 365 阅读 · 0 评论 -
Ubuntu下安装TensorFlow
记录一下自己安装笔记~~~一 . 在VM下安装Ubuntu系统。1. 查看Ubuntu系统的版本号命令: cat /etc/issue当前笔者Ubuntu系统版本号为16.04.4 LTS,即16.04长期支持版2. 安装anaconda集成包anaconda里面集成了很多关于python科学计算的第三方库,主要是安装方便,而python是一个编译器,如果不使用a...原创 2018-07-06 19:43:39 · 1375 阅读 · 0 评论 -
scikit-learn中kNN算法底层关键代码手写实现
import numpy as npfrom matplotlib import pyplot as pltvector = []X_train = np.random.random((10,2))*10X_trainarray([[7.05645191, 2.03283782], [9.84088868, 9.2098794 ], ...原创 2018-07-19 21:27:33 · 532 阅读 · 0 评论 -
手写数字识别及准确率评估和寻找最好的k值
import numpy as npimport matplotlib.pyplot as pltimport matplotlibfrom sklearn.model_selection import train_test_splitfrom sklearn import datasetsdigits = datasets.load_digits()digits{'...原创 2018-07-19 21:30:54 · 1466 阅读 · 0 评论 -
numpy里random总结
在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下。1. np.random.rand()2. np.random.randn()3. np.random.randint()4. np.random.random()5. np.random.seed()...原创 2018-07-15 12:28:24 · 4663 阅读 · 3 评论 -
ubuntu16.04 下基于anaconda3安装gpu版tensorflow
本人要做基于facenet的实验室打卡系统,因此要用到这个环境1. 安装Cudahttps://developer.nvidia.com/cuda-downloads 博主安装的是cuda9.0版本,最新目前为9.2,因为担心TensorFlow不兼容问题。 如图: 根据图中信息 Installation Instructions 步骤进行安装。2. 配置环境变...原创 2018-08-25 19:40:23 · 4088 阅读 · 6 评论 -
tf.random_uniform的使用
tf.random_uniform((4, 4), minval=low,maxval=high,dtype=tf.float32)))返回4*4的矩阵,产生于low和high之间,产生的值是均匀分布的。原创 2018-07-09 20:37:42 · 6596 阅读 · 1 评论