python-- numpy学习总结

本文详细介绍了Python Numpy库的常见和进阶用法,包括创建数组、索引与切片、数据类型dtype,以及arange、zeros、ones、eye等函数的使用。还涉及了reshape、concatenate、array_split等数组操作,搜索与筛选、排序、三角函数和随机数生成等内容,是学习和掌握Numpy库的实用教程。
摘要由CSDN通过智能技术生成

目录

一、Numpy常见用法

1. 创建数组

2. 索引与切片

3. dtype

4. 一般方法

4.1 arange

4.2 zeros

4.3 ones

4.4 eye

4.5 rand

4.6 randint

4.7 max min argmax argmin

二、NumPy进阶用法

1. reshape

2. 合并与分割

2.1 concatenate

2.2 array_split

3. 搜索与筛选

3.1 搜索

3.2 筛选

4. 排序

5.三角函数

6. 随机

6.1 随机概率

6.2 随机排列

6.3 随机分布


一、Numpy常见用法

1. 创建数组

1)使用np.array创建

import numpy as np
arr = np.array([1, 2, 3, 4, 5])

arr的输出为array([1, 2, 3, 4, 5])

我们输入以下代码创建二维数组:

my_matrix = [[1,2,3],[4,5,6],[7,8,9]]
mtrx= np.array(my_matrix)

mtrx的输出如下:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

2)创建特殊数组

#生成特殊数组
a1 = np.zeros((3,5)) #生成全0数组
print(a1)
b1 = np.ones((2,3))
print(b1)

3)使用arange()生成数组

# 利用arange()生成数组
c1 = np.arange(10,20,2)
print(c1)

2. 索引与切片

1)索引一维数组与二位数组如下:

print('arr[0]=',arr[0],'mtrx[1,1]=',mtrx[1,1])

输出 arr[0]= 1 mtrx[1,1]= 5

对数组切片:

arr[:3]

输出结果为 array([1, 2, 3])

2)倒数切片:

arr[-3:-1]

输出 array([3, 4])

加入步长(step),步长决定了切片间隔:

arr[1:4:2]

输出 array([2, 4])

3)二维数组切片:

mtrx[0:2, 0:2]

输出,代码意义为取第1、2行,第1、2列:

array([[1, 2],
       [4, 5]])

3. dtype

NumPy的dtpe有如下几种数据类型:

  • i - integer

  • b - boolean

  • u - unsigned integer

  • f - float

  • c - complex float

  • m - timedelta

  • M - datetime

  • O - object

  • S - string

  • U - unicode string

  • V - fixed chunk of memory for other type ( void )

import numpy as np
arr1 = np.array([1, 2, 3, 4])
arr2 = np.array(['apple', 'banana', 'cherry'])
print('arr1.dtype=',arr1.dtype,'arr2.dtype=',arr2.dtype)

输出为 arr1.dtype= int32 arr2.dtype= <U6。arr1数据类型为int32,arr2的<U6表示不超过6位Unicode字符串。

我们可以指定dtype类型。

arr = np.array(['1', '2', '3'], dtype='f')

输出结果为 array([1., 2., 3.], dtype=float32),其中1.表示1.0,可以看到dtype被设置为float32数据类型。

4. 一般方法

4.1 arange

np.arange(0,101,2)输出结果如下,该命令表示,在[0,101)区间内均匀地生成数据,间隔步长为2。

array([  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,  20,  22,  24,
        26,  28,  30,  32,  34,  36,  38,  40,  42,  44,  46,  48,  50,
        52,  54,  56,  58,  60,  62,  64,  66,  68,  70,  72,  74,  76,
        78,  80,  82,  84,  86,  88,  90,  92,  94,  96,  98, 100])

4.2 zeros

np.zeros((2,5))输出结果如下࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值