大数据--spark生态5--sparkStreaming

目录

一:流数据特征

二:流数据的数据价值

三:流计算系统的标准

四:流处理系统与传统的数据处理系统区别

五:数据处理分类

六:streaming的特点

七:DStream转换

八:Flink优势


一:流数据特征

  • 数据快速到达
  • 数据来源众多
  • 数据量大
  • 注重数据的整体价值

二:流数据的数据价值

        数据的价值随着时间流逝而降低。

三:流计算系统的标准

  • 高性能
  • 海量式
  • 实时性
  • 分布式
  • 易用性
  • 可靠性

四:流处理系统与传统的数据处理系统区别

  • 流处理系统处理的是实时的数据,而传统的数据处理系统处理的是预先存储好的静态数据。
  • 用户通过流处理系统获取的是实时结果,而通过传统的数据处理系统,获取的是过去某一时刻的结果。
  • 流处理系统无需向用户主动发出查询,实时查询服务可以主动将实时结果推送给用户。

五:数据处理分类

  • 数据处理方式角度:流式, 批量
  • 数据处理延迟: 实时, 离线

六:streaming的特点

  • 易用
  • 容错
  • 容易整合到spark体系

七:DStream转换

        DStream上的操作与rdd类似,分为transformations和ouput operations(输出)。此外,转换操作中还有一些比较特殊的原语,例如:updatestatebykey(), transform()以及各种window相关的原语。

八:Flink优势

  • 同时支持高吞吐,低延迟,高性能
  • 同时支持流处理和批处理
  • 高度灵活的流式窗口
  • 支持有状态计算
  • 具有良好的容错性
  • 具有独立的内存管理
  • 支持迭代和增量迭代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值