Transformer源码Pytorch版解读

附件

📎20230625_Transformer的Pytorch代码解读.pptx

论文地址https://arxiv.org/abs/1706.03762

完整代码multimodal-learning/transformer_torch.py at main · Yeezy7/multimodal-learning

一、模型架构

1.1 整体框架

1.1.1 整体架构

从整体网路结构来看,分为三个部分:编码层,解码层,输出层

1.1.2 Transformer工作流程

Transformer工作流程:

# 整体架构
class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        # 输出层 d_model 是解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
    def forward(self, enc_inputs, dec_inputs):
        # 两个输入,一个是enc_inputs 形状为[batch_size, src_len], 主要作为编码端的输入;一个dec_inputs,形状为[batch_size, tgt_len], 主要作为解码端的输入

        # enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出;
        # enc_outputs就是主要的输出,enc_self_attns这里没记错的是 QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        # dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

        # dec_outputs 做映射到词表大小
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size , tgt_len , tgt_vocab_size]

        # dec_logits.view(-1, dec_logits.size(-1)) : [batch_size * tgt_len, tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

1.2 编码器 Encoder

1.2.1 整体架构

Encoder 包含三个部分:

词向量embedding位置编码注意力层及后续的前馈神经网络

# 编码器
# Encoder 包含三个部分:词向量embedding,位置编码,注意力层及后续的前馈神经网络
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model) # 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model
        self.pos_emb = PositionalEncoding(d_model) # 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
        self.layer = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) # 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;

    def forward(self, enc_inputs):
        # enc_inputs 形状是: [batch_size x source_len]
        
        # 通过src_emb,进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs)
        
        # 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)
        
        # get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4.
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

1.2.2 位置编码

位置编码公式:

p_{i,2j}=sin(\frac{i}{10000^{2j/d}})=sin(i*e^{-log_{10000}2j/d})

p_{i,2j+1}=cos(\frac{i}{10000^{2j/d}})=cos(i*e^{-log_{10000}2j/d})

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        
        # 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        # 从理解来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        # pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        # 假设我的demodel是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4...510
        self.dropout = nn.Dropout(p=dropout) # 正则化层
        
        pe = torch.zeros((max_len, d_model))
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term) # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,补长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term) # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,补长为2,其实代表的就是奇数位置
        
        # 上面代码获取之后得到的pe:[max_len , d_model]
        
        # 下面这个代码之后,得到的pe:[max_len , 1 , d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)
        
        self.register_buffer('pe', pe) # 定一个缓冲区,其实简单理解为这个参数不更新就可以
        
    def forward(self, x):
        """
        x: [seq_len, batch_size, d_model]
        """    
        x = x + self.pe[:x.size[(0), :]
        return self.dropout(x) 

1.2.3 注意力掩码

是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响。

比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状 [len_input , len , input] 代表每个单词对其余包含自己的单词的影响力,所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为负无穷大;一定需要注意的是这里得到的矩阵形状是 [batch_size , len_q , len_k],我们是对k中的pad符号进行标识,并没有对q中的做标识,因为没必要。seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # [batch_size, 1, len_k], False is masked
    return pad_attn_mask.expand(batch_size, len_q, len_k) # [batch_size, len_q, len_k]
  

1.2.4 编码层

EncoderLayer :包含两个部分,多头注意力机制前馈神经网络;

Encoder中通过ModuleList组合多个EncoderLayer层

# EncoderLayer :包含两个部分,多头注意力机制和前馈神经网络
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
        
    def forward(self, enc_inputs, enc_self_attn_mask):
        # 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model] 需要注意的是最初始的QKV矩阵是等同于这个输入的,去看一下enc_self_attn函数 6.
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn

1.2.5 多头注意力

设置 h 组不同的 线性投影(linear projections)来变换查询、键和值。然后,这 h 组变换后的查询、键和值将并行地进行注意力池化。最后,将这 h 个注意力池化的输出拼接在一起,并且通过另一个可以学习的线性投影进行变换,以产生最终输出。这种设计被称为 多头注意力

# MultiHeadAttention
class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        # 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk,Wv
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.layer_norm = nn.LayerNorm(d_model)
        
    def forward(self, input_Q, input_K, input_V, attn_mask):
        # 这个多头分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value;
        # 输入进来的数据形状: Q: [batch_size , len_q , d_model], K: [batch_size , len_k , d_model], V: [batch_size , len_k , d_model]
        
        residual, batch_size = input_Q, input_Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        
        # 下面这个就是先映射,后分头,分为n_heads个头;一定要注意的是q和k分头之后维度是一致de,所以一看这里都是dk
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k]
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k]
        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v, d_v]
        
        # 输入进行的attn_mask形状是 [batch_size , len_q , len_k],然后经过下面这个代码得到 新的attn_mask : [batch_size , n_heads , len_q , len_k],就是把pad信息重复了n个头上
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
        
        # 然后我们计算 ScaledDotProductAttention 这个函数
        # 得到的结果有两个:context: [batch_size , n_heads , len_q , d_v], attn: [batch_size , n_heads , len_q , len_k]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # 缩放点积注意力
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size , len_q , n_heads * d_v]
        output = self.linear(context) # output: [batch_size , len_q , d_model]
        return self.layer_norm(output + residual), attn

上述维度的变化

MultiHeadAttention类的forward方法中,输入数据和中间变量的维度变化如下:

1. 输入数据维度

    • input_Q:[batch_size, len_q, d_model]查询序列
    • input_K:[batch_size, len_k, d_model]键序列
    • input_V:[batch_size, len_k, d_model]值序列
    • attn_mask:[batch_size, len_q, len_k]注意力掩码

2. 线性映射和分头

    • Q = self.W_Q(input_Q):[batch_size, len_q, d_k * n_heads]
    • K = self.W_K(input_K):[batch_size, len_k, d_k * n_heads]
    • V = self.W_V(input_V):[batch_size, len_k, d_v * n_heads]

3. 调整形状和转置

    • Q.view(...):[batch_size, len_q, n_heads, d_k]
    • K.view(...):[batch_size, len_k, n_heads, d_k]
    • V.view(...):[batch_size, len_k, n_heads, d_v]
    • Q.transpose(1, 2):[batch_size, n_heads, len_q, d_k]
    • K.transpose(1, 2):[batch_size, n_heads, len_k, d_k]
    • V.transpose(1, 2):[batch_size, n_heads, len_k, d_v]

4. 注意力掩码扩展

    • attn_mask.unsqueeze(1):[batch_size, 1, len_q, len_k]
    • attn_mask.repeat(...):[batch_size, n_heads, len_q, len_k]

5. 缩放点积注意力计算

    • context:[batch_size, n_heads, len_q, d_v]
    • attn:[batch_size, n_heads, len_q, len_k]

6. 合并头和线性变换

    • context.transpose(1, 2):[batch_size, len_q, n_heads, d_v]
    • context.contiguous(): 确保内存连续性,维度不变
    • context.view(...):[batch_size, len_q, n_heads * d_v]
    • output = self.linear(context):[batch_size, len_q, d_model]

7. 残差连接和层归一化

    • output + residual:[batch_size, len_q, d_model]
    • self.layer_norm(...):[batch_size, len_q, d_model]

1.2.6 缩放点积注意力

缩放点积注意力:

Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt d})V

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()
    
    def forward(self, Q, K, V, attn_mask):
        # 输入进来的维度分别是 Q: [batch_size , n_heads , len_q , d_k]  K: [batch_size , n_heads , len_k , d_k]  V: [batch_size , n_heads , len_k , d_v]
        # 首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)

        # 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn

1.2.7 位置感知前馈网络

d_model 是模型的维度,即输入和输出的维度。

d_ff 是前馈网络中间层的维度

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.layer_norm = nn.LayerNorm(d_model)
    
    def forward(self, inputs):
        residual = inputs # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return self.layer_norm(output + residual)

1.3 解码器Dncoder

1.3.1 整体架构

解码器包含:掩码多头注意力、

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs)  # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model]

        ## get_attn_pad_mask 自注意力层的时候的pad 部分
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)

        ## get_attn_subsequent_mask 这个做的是自注意层的mask部分,就是当前单词之后看不到,使用一个上三角为1的矩阵
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)

        ## 两个矩阵相加,大于0的为1,不大于0的为0,为1的在之后就会被fill到无限小
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)


        ## 这个做的是交互注意力机制中的mask矩阵,enc的输入是k,我去看这个k里面哪些是pad符号,给到后面的模型;注意哦,我q肯定也是有pad符号,但是这里我不在意的,之前说了好多次了哈
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns

1.3.2 掩码多头注意力

关键步骤:

1、生成掩码:创建一个上三角矩阵作为掩蔽,用于屏蔽序列中未来的信息。并扩展到与批次大小和头数相匹配的形状

2、应用掩码:在计算注意力权重之前,将掩蔽矩阵加到注意力分数上,使得被掩蔽的位置具有一个非常大的负值,这样,在应用softmax函数时,这些位置的权重会接近于0。

3、计算注意力:使用修改后的注意力分数来计算注意力权重,并通过这些权重来加权求和值序列。

def get_attn_subsequent_mask(seq): # seq: [batch_size, tgt_len]
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    # attn_shape: [batch_size, tgt_len, tgt_len]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1)  # 生成一个上三角矩阵
    subsequence_mask = torch.from_numpy(subsequence_mask).byte() # 转成byte张量
    return subsequence_mask # [batch_size, tgt_len, tgt_len]

其余掩码多头注意力代码见1.3.2

1.3.3 解码层

单个解码器包含:自注意力机制、编码器-解码器注意力机制和前馈网络

对于编码器-解码器注意力:

查询(Query):dec_outputs是解码器自注意力层的输出,它作为查询(Q)输入到编码器-解码器注意力层。这是因为解码器层的每个步骤都是基于之前步骤的输出。

键(Key)和值(Value):enc_outputs是编码器的输出,它被用作键(K)和值(V)输入到编码器-解码器注意力层。这是因为解码器需要关注编码器的完整输出,以获取与当前解码步骤最相关的信息。

# 由自注意力机制、编码器-解码器注意力机制和前馈网络组成
class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
    
    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
        dec_outputs = self.pos_ffn(dec_outputs)
        return dec_outputs, dec_self_attn, dec_enc_attn

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer 模型是一种深度学习模型,用于处理序列数据,如自然语言处理任务中的文本分类、机器翻译等。下面是一个简单的 TransformerPyTorch 代码解读: ```python import torch import torch.nn as nn import torch.nn.functional as F class Transformer(nn.Module): def __init__(self, input_dim, hidden_dim, num_classes): super(Transformer, self).__init__() self.embedding = nn.Embedding(input_dim, hidden_dim) self.encoder_layer = nn.TransformerEncoderLayer(hidden_dim, nhead=4) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2) self.fc = nn.Linear(hidden_dim, num_classes) def forward(self, x): x = self.embedding(x) x = x.permute(1, 0, 2) # 调整输入形状 x = self.transformer_encoder(x) x = x.permute(1, 0, 2) # 调整输出形状 x = x.mean(dim=1) # 平均池化 x = self.fc(x) return F.log_softmax(x, dim=1) ``` 这段代码定义了一个简单的 Transformer 模型,包含了嵌入层、Transformer 编码器层和全连接层。 在构造函数 `__init__` 中,首先创建了一个嵌入层 `embedding`,用于将输入数据进行向量化表示。`input_dim` 是输入数据中的词汇表大小,`hidden_dim` 是每个词向量的维度。 接着创建了一个 Transformer 编码器层 `encoder_layer`,并使用它初始化了 `transformer_encoder`。`hidden_dim` 表示编码器的输入和输出的维度,`nhead` 表示多头注意力机制的头数。 最后,创建了一个全连接层 `fc`,将 Transformer 编码器的输出映射到目标类别数量 `num_classes`。 在前向传播函数 `forward` 中,输入数据先经过嵌入层进行词向量化,然后调整形状。接着通过 Transformer 编码器层进行特征提取和表示学习,再次调整形状。然后通过平均池化操作对时间维度进行降维,最后通过全连接层得到预测结果,并使用 log_softmax 进行归一化。 这是一个简单的 Transformer 模型的代码解读,更复杂的模型可以通过增加编码器层和解码器层来实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值