# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
from matplotlib import pyplot as plt
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
data
def load_data():
# 从文件导入数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')
# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
feature_num = len(feature_names)
# 将原始数据进行Reshape,变成[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
# 将原数据集拆分成训练集和测试集
# 这里使用80%的数据做训练,20%的数据做测试
# 测试集和训练集必须是没有交集的
ratio = 0.8
offset = int(data.shape[0] * ratio)
traini
paddle实现波士顿房价预测任务
最新推荐文章于 2024-07-22 17:48:50 发布
本文详细介绍了如何运用PaddlePaddle框架,结合Python,实现波士顿房价预测的机器学习任务。通过数据预处理、模型构建、训练与评估,揭示了深度学习在房价预测中的应用。
摘要由CSDN通过智能技术生成