Ollama ModelFile(模型文件)

1. 什么是 Modelfile?

Modelfile 是 Ollama 的配置文件,用于定义和自定义模型的行为。通过它,你可以:

  • 基于现有模型(如 llama2mistral)创建自定义版本

  • 调整生成参数(如温度、重复惩罚)

  • 添加系统级提示(SYSTEM 指令)

  • 合并多个模型或适配器

2. Modelfile 核心语法

# 基础模型(必须)
FROM <模型名>

# 系统提示(定义模型的默认行为)
SYSTEM """
你是一个幽默的助手,回答要简短且押韵。
"""

# 调整生成参数
PARAMETER temperature 0.7         # 控制随机性(0-1,越高越有创意)
PARAMETER num_ctx 4096            # 上下文窗口大小
PARAMETER num_predict 512         # 最大生成长度

# 模板(控制对话格式)
TEMPLATE """{{ .System }}
{{ .Prompt }}"""

3. 创建自定义模型的步骤

1)新建 Modelfile:创建一个文本文件(如 my-model.Modelfile),写入配置。

2)构建模型

ollama create my-custom-model -f ./my-model.Modelfile

3)运行模型

ollama run my-custom-model

4. 常用 Modelfile 指令

指令说明示例
FROM基础模型FROM llama2:13b
SYSTEM系统级提示SYSTEM "你是一个专业翻译助手"
PARAMETER调整模型参数PARAMETER temperature 0.3
ADAPTERS合并适配器(需路径)ADAPTERS ./my-adapter.bin
TEMPLATE定义输入模板见下方示例

5 完整案例

# 基于 mistral 模型,创建一个代码助手
FROM mistral

SYSTEM """
你是一个专业的 Python 程序员,回答需包含代码示例,并用中文解释。
"""

PARAMETER temperature 0.5
PARAMETER num_ctx 2048

TEMPLATE """[INST] {{ .System }}
{{ .Prompt }} [/INST]
"""

6. 模型文件存储位置

Ollama 模型默认存储在以下路径:

  • Linux/Mac~/.ollama/models/

  • WindowsC:\Users\<用户名>\.ollama\models

7. 常见问题

1)如何更新自定义模型?
修改 Modelfile 后重新运行 ollama create(需先删除旧模型:ollama rm 模型名)。

2)如何共享自定义模型?

  • 通过 ollama push 推送到 Ollama 库(需注册)

  • 或直接分享 Modelfile 和适配器文件(如果有)

3)如何查看模型参数?
运行 ollama show <模型名> --modelfile 查看生成该模型的完整配置。

如果需要进一步调整模型权重或底层架构,需使用更高级工具(如 PyTorch/HuggingFace),Ollama 的 Modelfile 主要针对轻量化定制。

 

### Ollama Modelfile 文件格式说明 Ollama Modelfile 是用于定义模型构建规则的配置文件。此文件包含了关于如何组装和配置特定机器学习模型的信息,包括但不限于模型权重的位置、依赖项以及环境变量等设置[^2]。 #### 基础结构 一个典型的 `Modelfile` 可能看起来像这样: ```dockerfile FROM ollama/base:latest COPY ./model /app/model/ WORKDIR /app/ ENV MODEL_NAME=my_custom_model \ MODEL_VERSION=1.0.0 CMD ["ollama", "serve"] ``` 上述例子展示了基于官方基础镜像创建新模型的过程,并设置了必要的环境变量以便于后续调用和服务启动命令[^1]。 #### 关键指令解释 - **FROM**: 指定所使用的基底Docker镜像; - **COPY**: 将主机上的指定目录复制到容器内的目标位置; - **WORKDIR**: 设置工作目录为 `/app/`; - **ENV**: 定义环境变量,在这里是模型名称及其版本号; - **CMD**: 提供默认执行程序或shell命令列表; 通过这种方式可以灵活调整不同部分以适应具体的项目需求。 --- ### 实际操作指南 当需要修改现有模型或者引入新的预训练模型时,则需编辑对应的 `Modelfile`. 下面是一个简单的流程展示如何完成这项任务: 假设当前有一个名为 `my_project` 的项目,其中包含了一个预先下载好的模型存放在 `./models/my_pretrained_weights`. 为了使该模型能够在 Ollama 平台上正常运作, 需要按照如下方式编写相应的 `Modelfile` : ```dockerfile # 使用最新的OLLAMA基础镜像作为起点 FROM ollama/base:latest # 把本地存储的模型拷贝至应用根目录下的 'model' 子文件夹内 COPY models/my_pretrained_weights /app/model/ # 设定应用程序的工作空间为 '/app' WORKDIR /app/ # 添加任何额外所需的环境设定(如果有的话), 如Python包安装等. RUN pip install numpy pandas scikit-learn # 明确指出本项目的模型名与版本信息 ENV MODEL_NAME=my_project_model \ MODEL_VERSION=v1.0.0 # 启动服务端口监听并准备接收请求 EXPOSE 8080/tcp # 默认启动的服务命令 CMD ["ollama", "serve", "--port", "8080"] ``` 保存以上内容后即可利用 Docker 构建工具链来打包成可分发的形式.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alden_ygq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值