傅里叶变换系列学习(3)----FS,FT,DTFT,DFS,DFT,FFT - 技术派到了中年的文章 - 知乎 https://zhuanlan.zhihu.com/p/97835957
前面花了两章的时间,从纯数学的角度证明了连续周期信号的傅里叶级数求解,以及如何用级数表达出原先的信号。
系列(1)从0开始花了很大的篇幅讲了三角级数。
技术派到了中年:傅里叶变换系列学习(1)----从线性变换说起98 赞同 · 16 评论文章正在上传…重新上传取消
系列(2)在系列(1)的基础上,把信号分解拓展到了复数领域,复信号看上去更简单一些。
技术派到了中年:傅里叶变换系列学习(2)----复信号的傅里叶级数37 赞同 · 12 评论文章正在上传…重新上传取消
前面主要处理的是连续周期信号,对应的是,傅里叶级数 Fourier Series,英文简写就是FS。今天继续从纯数学的角度证明一下其他类型的傅里叶变换。下面用表格概括的介绍其他类型的变换。
1. FT(Fourier Transform)
有的地方也称之为CTFT(Continuous Time Fourier Transform),处理的时连续周期信号。
先抛公式,正变换:
逆变换:
对于非周期函数,数学上的处理是,假设函数的周期为T,然后让T趋向于无穷大的,我们这边做类似的动作。根据系列(2), 我们可以得到正变换如下:
再根据系列(2)里面的反变换公式,我们可以得到:
2. DFS(Discrete Fourier Series)
证明,使用内积公式
得证。so easy!
请注意,有的地方是这样写的:
正变换:
逆变换:
事实上,这一组变换,跟上面的一组,最终结果是一样的,区别在于归一化因子在不同的域,不影响全局。更有其他的表达式如下:
正变换:
逆变换:
仔细看一下,其实,最终的表达是都是一样的,差异只是在于归一化因子在不同的域。
3. DTFT(Discrete Time Fourier Series)
严格来说,DTFT处理的是离散时间序列信号,这种信号在时间上是离散的,但是信号的幅度是可以任意值,也就是说没有量化,还不是数字信号。非严格的场合,可以认为它是离散信号,并且是非周期信号。
对于非周期信号,我们完全可以参考FT或者是CTFT的变换。
值得注意的是,DTFT的正变换,其结果是连续的。
证明略。
4. DFT(Discrete Fourier Transform)
DFT才是我们耳熟能详的变换,DFT处理的是非周期离散信号,这样的信号计算机比较容易处理,我们再看看DTFT,正变换产生了连续信号,这个不利于计算机处理。为了方便计算机处理,必须让正变换的结果也是离散值,这一点DFS正满足。DFS应对的是周期离散信号,正变换后的序列也是周期离散的。前面我们提到,对于非周期信号,数学家总是先假设其周期为T,然后取极限,让T趋向于无穷大,这样得到了非周期信号的变换结果。细心的你,可能已经发现,非周期信号的变换结果,都是连续的,连续信号对于CPU来说,不是一个好东西。
所以,数学家在这次处理非周期信号的时候,采用了不同的方法。这次的方法是对非周期信号做周期延拓,这样不就变成DFS了吗,还要DFT做什么呢。别急,DFS变换后是周期离散信号,但是DFT只取DFS变换后的一个周期。DFT在处理的时候投机取巧,方便了计算机处理,所以我们通常听得比较多的就是DFT。
另外,DFT也可以从DTFT抽样过来,DTFT作为连续信号,均匀采样N个点,就变成DFT了。
DFT的变换可以原样copy DFS的公式。
略略略。
5. FFT(Fast DFT)
终于讲到FFT了,FFT是DFT的快速算法,节约了大量的运算。对于工程领域的同学来说,FFT就是天。没有FFT,啥也没有了。有了FFT,才使得DFT成为可能。
DFT的运算级别是量级的,FFT的运算级别是 级别的,看上去差别好像不是很大,N变大后,差别就非常大了。(FFT是基2的,就是说N必须是2的幂次)
对于动辄1024点或者以上的DFT运算,FFT的出现,使得DFT运算变成了可能。在通信领域,可以说FFT的出现,才使得4G/5G成为可能。
FFT算法的详细介绍,暂时先放一下,后面会做仔细的描述。
至此,纯基于数学的傅里叶系列的FS, FT, DFS, DTFT, DFT, FFT基本介绍完成,下一章,我们从其他角度再分辨。