非高斯和非圆信号介绍

非高斯和非圆信号的分类是根据信号的统计特征进行的。

非高斯信号

对于一个零均值的复随机信号 s ( t ) s\left( t \right) s(t)来说,二阶累积量是经常使用的,但是对于更高阶的累积量来说则会包含更多的信号,关于高阶累积量可以参考基于四阶累积量的MUSIC算法与MUSIC-like算法(DOA估计)这篇文章中有关高阶累积量的介绍。

峰度(Kurtosis)为归一化的四阶累积量,其可以表示为
κ ( s ( t ) ) = γ 4 s σ s 4 = E { ∣ s ( t ) ∣ 4 } − 2 ( E { ∣ s ( t ) ∣ 2 } ) 2 − ∣ E { s 2 ( t ) } ∣ 2 ( E { ∣ s ( t ) ∣ 2 } ) 2 \kappa \left( s\left( t \right) \right)=\frac{\gamma _{4}^{s}}{\sigma _{s}^{4}}=\frac{E\left\{ {{\left| s\left( t \right) \right|}^{4}} \right\}-2{{\left( E\left\{ {{\left| s\left( t \right) \right|}^{2}} \right\} \right)}^{2}}-{{\left| E\left\{ {{s}^{2}}\left( t \right) \right\} \right|}^{2}}}{{{\left( E\left\{ {{\left| s\left( t \right) \right|}^{2}} \right\} \right)}^{2}}} κ(s(t))=σs4γ4s=(E{s(t)2})2E{s(t)4}2(E{s(t)2})2E{s2(t)}2
其中, σ s 2 = E { ∣ s ( t ) ∣ 2 } \sigma _{s}^{2}=E\left\{ {{\left| s\left( t \right) \right|}^{2}} \right\} σs2=E{s(t)2}表示复随机信号 s ( t ) s\left( t \right) s(t)的方差,
γ 4 s = E { ∣ s ( t ) ∣ 4 } − 2 ( E { ∣ s ( t ) ∣ 2 } ) 2 − ∣ E { s 2 ( t ) } ∣ 2 \gamma _{4}^{s}=E\left\{ {{\left| s\left( t \right) \right|}^{4}} \right\}-2{{\left( E\left\{ {{\left| s\left( t \right) \right|}^{2}} \right\} \right)}^{2}}-{{\left| E\left\{ {{s}^{2}}\left( t \right) \right\} \right|}^{2}} γ4s=E{s(t)4}2(E{s(t)2})2E{s2(t)}2
为该复随机信号的四阶累积量。

如果 κ ( s ( t ) ) = 0 \kappa \left( s\left( t \right) \right)=0 κ(s(t))=0,那么 s ( t ) s\left( t \right) s(t)表示的就是高斯信号;如果 κ ( s ( t ) ) ≠ 0 \kappa \left( s\left( t \right) \right)\ne 0 κ(s(t))=0,那么 s ( t ) s\left( t \right) s(t)表示的就是非高斯信号。更进一步,如果 κ ( s ( t ) ) > 0 \kappa \left( s\left( t \right) \right)>0 κ(s(t))>0,那么 s ( t ) s\left( t \right) s(t)表示的就是超高斯信号,如语音信号、生物医学信号等;如果 κ ( s ( t ) ) < 0 \kappa \left( s\left( t \right) \right)<0 κ(s(t))<0,那么 s ( t ) s\left( t \right) s(t)表示的就是次高斯信号,例如常见的通信信号、雷达信号等。

非圆信号

对于一个零均值的复随机信号 s ( t ) s\left( t \right) s(t)来说,可以根据其一阶矩和二阶矩是否具有旋转不变的性质,将其分为圆信号和非圆信号,即
E [ s ( t ) e j φ ] = E [ s ( t ) ] E\left[ s\left( t \right){{e}^{j\varphi }} \right]=E\left[ s\left( t \right) \right] E[s(t)ejφ]=E[s(t)]
E [ ( s ( t ) e j φ ) ( s ( t ) e j φ ) * ] = E [ s ( t ) s * ( t ) ] E\left[ \left( s\left( t \right){{e}^{j\varphi }} \right){{\left( s\left( t \right){{e}^{j\varphi }} \right)}^{\text{*}}} \right]=E\left[ s\left( t \right){{s}^{\text{*}}}\left( t \right) \right] E[(s(t)ejφ)(s(t)ejφ)*]=E[s(t)s*(t)]
E [ s ( t ) e j φ s ( t ) e j φ ] = E [ s 2 ( t ) ] E\left[ s\left( t \right){{e}^{j\varphi }}s\left( t \right){{e}^{j\varphi }} \right]=E\left[ {{s}^{2}}\left( t \right) \right] E[s(t)ejφs(t)ejφ]=E[s2(t)]
对于任意零均值信号来说, E [ s ( t ) e j φ ] = E [ s ( t ) ] E\left[ s\left( t \right){{e}^{j\varphi }} \right]=E\left[ s\left( t \right) \right] E[s(t)ejφ]=E[s(t)]是恒成立的;对应任意信号 E [ ( s ( t ) e j φ ) ( s ( t ) e j φ ) * ] = E [ s ( t ) s * ( t ) ] E\left[ \left( s\left( t \right){{e}^{j\varphi }} \right){{\left( s\left( t \right){{e}^{j\varphi }} \right)}^{\text{*}}} \right]=E\left[ s\left( t \right){{s}^{\text{*}}}\left( t \right) \right] E[(s(t)ejφ)(s(t)ejφ)*]=E[s(t)s*(t)]也是恒成立的;如果 E [ s ( t ) e j φ s ( t ) e j φ ] = E [ s 2 ( t ) ] E\left[ s\left( t \right){{e}^{j\varphi }}s\left( t \right){{e}^{j\varphi }} \right]=E\left[ {{s}^{2}}\left( t \right) \right] E[s(t)ejφs(t)ejφ]=E[s2(t)]成立,也就意味着 E [ s ( t ) e j φ s ( t ) e j φ ] = E [ s 2 ( t ) ] = 0 E\left[ s\left( t \right){{e}^{j\varphi }}s\left( t \right){{e}^{j\varphi }} \right]=E\left[ {{s}^{2}}\left( t \right) \right]=0 E[s(t)ejφs(t)ejφ]=E[s2(t)]=0。因此,如果 E [ s 2 ( t ) ] = 0 E\left[ {{s}^{2}}\left( t \right) \right]=0 E[s2(t)]=0,那么 s ( t ) s\left( t \right) s(t)就是圆信号,否则为非圆信号。

进一步地,非圆系数 γ s {{\gamma }_{s}} γs可以表示为
γ s = E { s 2 ( t ) } E { ∣ s ( t ) ∣ 2 } = ∣ γ s ∣ e j ϕ s {{\gamma }_{s}}=\frac{E\left\{ {{s}^{2}}\left( t \right) \right\}}{E\left\{ {{\left| s\left( t \right) \right|}^{2}} \right\}}=\left| {{\gamma }_{s}} \right|{{e}^{j{{\phi }_{s}}}} γs=E{s(t)2}E{s2(t)}=γsejϕs
其中, ∣ γ s ∣ \left| {{\gamma }_{s}} \right| γs表示非圆率, ϕ s {{\phi }_{s}} ϕs表示非圆相位。当 ∣ γ s ∣ = 0 \left| {{\gamma }_{s}} \right|=0 γs=0时, s ( t ) s\left( t \right) s(t)表示圆信号;当 ∣ γ s ∣ ≠ 0 \left| {{\gamma }_{s}} \right|\ne 0 γs=0时, s ( t ) s\left( t \right) s(t)表示非圆信号,特别地,当 ∣ γ s ∣ = 1 \left| {{\gamma }_{s}} \right|=1 γs=1时, s ( t ) s\left( t \right) s(t)表示直线信号。对于常见的调制信号来说,BPSK和PAM的非圆率均为1,即为直线信号;UQPSK的非圆利率是小于1的,即为非圆信号;QPSK和QAM的非圆率为0,即为圆信号。也就是说,信号的非圆率是由其调制方式决定的。

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本书主要介绍高斯信号处理(包括基于高阶统计量和分数低阶统计量的信号处理)的理论、方法及其应用。全书分为9章,内容包括:高斯过程与二阶统计量,高阶累积量和高阶谱,Alpha稳定分布与分数低阶统计量,基于以上信号的处理方法,基于分数低阶统计量数字信号处理的应用等。 第1章 绪论 1.1 预备知识 1.1.1 信号信号处理的概念 1.1.2 随机变量及其分布 1.1.3 随机信号及随机过程 1.1.4 统计信号处理的原理与方法 1.2 矩理论简介 1.2.1 矩及统计量的概念 1.2.2 二阶统计量及基于二阶统计量的信号处理 1.2.3 高阶统计量及基于高阶统计量的信号处理 1.2.4 分数低阶统计量及基于分数低阶统计量的信号处理 1.3 高斯信号处理的发展 参考文献 第2章 高斯分布与高斯过程 2.1 高斯分布 2.1.1 中心极限定理 2.1.2高斯分布律 2.2 高斯过程 参考文献 第3章 基于二阶统计量的信号处理方法 3.1 基本估计理论 3.1.1 最小二乘估计 3.1.2 线性最小方差估计 3.1.3 最小方差估计 3.1.4 最大似然估计 3.1.5 最大后验概率估计 3.2 维纳滤波与卡尔曼滤波 3.2.1 连续信号的维纳滤波 3.2.2 离散维纳滤波 3.2.3 卡尔曼滤波 3.3 参数模型功率谱估计 3.3.1 平稳随机信号的参数模型 3.3.2 AR模型功率谱估计 3.3.3 MA模型功率谱估计 3.3.4 ARMA模型功率谱估计 3.4 自适应数字滤波器 3.4.1 横向LMS自适应数字滤波器 3.4.2 递推自适应数字滤波器 3.4.3 自适应格型数字滤波器 3.4.4 递归型自适应数字滤波器 参考文献 第4章 高阶累积量和高阶谱 4.1 高阶矩和高阶累积量 4.1.1 高阶累积量和高阶矩的定义 4.1.2 高阶累积量和高阶矩的关系 4.1.3 高阶矩和高阶累积量的性质 4.1.4 平稳随机过程的高阶矩和高阶累积量 4.1.5 随机过程的互累积量 4.2 随机过程的高阶累积量谱和高阶矩谱 4.2.1 累积量谱和高阶矩谱的定义 4.2.2 累积量谱的特例 4.2.3 k阶相干函数和互累积量谱 4.3 高阶谱估计的参数方法 4.3.1 直接法 4.3.2 间接法 4.4 高斯过程与线性系统 4.4.1 高斯白噪声过程 4.4.2 高斯白噪声过程与线性系统 参考文献 第5章 基于高阶统计量的信号处理方法 5.1 基于高阶统计量的系统辨识 5.1.1 最小相位系统 5.1.2 基于高阶统计量的系统辨识 5.1.3 高阶统计量用于MA系统辨识 5.1.4 高阶统计量用于因果AR模型辨识 5.1.5 ARMA模型参数估计方法 5.2 有色噪声中的信号提取 5.2.1 复信号累积量的定义 5.2.2 谐波过程的累积量 5.2.3 高斯有色噪声中的谐波恢复 5.2.4 高斯有色噪声中的谐波恢复 5.3 基于高阶累积量的参数模型阶数的确定 参考文献 第6章 高阶统计量在信号处理中的应用 6.1 基于高阶累积量的自适应信号处理 6.1.1 基于高阶累积量的自适应FIR算法 6.1.2 基于累积量的MMSE准则 6.1.3 RLS自适应算法 6.2 高阶统计量在独立分量分析中的应用 6.2.1 问题的数学描述 6.2.2 1CA问题的解法 6.3 基于高阶累积量的时间延迟估计 6.3.1 基于双谱估计的时延估计 6.3.2 基于互双倒谱的时延估计 6.3.3 自适应时延估计方法 参考文献 第7章 Alpha稳定分布与分数低阶统计量 7.1 历史回顾 7.1.1 历史回顾 7.1.2 发展动因 7.2 Alpha稳定分布的概念 7.2.1 a稳定分布的概念 7.2.2 a稳定分布的几种特殊情况 7.2.3 广义中心极限定理 7.2.4 a稳定分布的性质 7.2.5 a稳定分布的概率密度函数 7.2.6 多变量O稳定分布 7.2.7 对称O稳定分布随机信号(随机过程) 7.3 分数低阶统计量 7.3.1 分数低阶矩 7.3.2 负阶矩 7.3.3 零阶矩 7.3.4 a稳定分布过程的分类 7.3.5 用于脉冲特性信号建模的其他分布 7.4 共变及其应用 7.4.1 共变的概念 7.4.2 共变的主要性质 7.4.3 共变在线性回归中的应用 7.4.4 复SaS分布的共变 7.5 对称Alpha稳定分布的参数估计 7.5.1 最大似然估计方法 7.5.2 基于样本分位数的参数估计方法 7.5.3 基于样本特征函数的参数估计方法 7.5.4 无穷方差的检验 7.5.5 基于负阶矩的方法 7.5.6 计算机模拟中的若干问题 参考文献 第8章 基于分数低阶统计量的信号处理 8.1 稳定分布的参数模型方法 8.1.1 最大似然估计 8.1.2 广义Yule-Walker方程 8.1.3 最小二乘方法 8.1.4 最小9范数估计 8.1.5 性能比较 8.2 a稳定分布过程的线性理论 8.2.1 自适应最小平均9范数方法 8.2.2 基于分数低阶统计量(FLOS)的自适应算法 8.2.3 线性预处理方法 8.2.4 递推最小平均9范数算法(RLMP) 8.3 a稳定分布噪声下的信号检测 8.3.1 最大功率检测 8.3.2 局部最优检测 8.3.3 a稳定分布噪声下的信号检测 8.3.4渐进误差概率 8.3.5 性能比较 参考文献 第9章 基于分数低阶统计量信号处理的应用 9.1 概述 9.2 基于分数低阶统计量的时间延迟估计 9.2.1 时间延迟估计的基本概念和基本原理 9.2.2 存在的问题 9.2.3 基于分数低阶统计量的时间延迟估计 9.3 分数低阶统计量在诱发电位潜伏期变化检测中的应用 9.3.1 诱发电位的概念及其临床意义 9.3.2 传统的检测方法及存在的问题 9.3.3 基于分数低阶统计量的EP潜伏期变化检测方 9.4 分数低阶统计量在CDMA中的应用 9.4.1 CDMA技术简介 9.4.2 信道脉冲噪声的消除 9.4.3 多用户检测 9.5 分数低阶统计量在图像处理中的应用 9.5.1 数字图像处理的概念 9.5.2 在医学超声图像处理中的应用 9.5.3 在X射线图像处理中的应用 9.6 分数低阶统计量在信号检测处理中的应用 9.6.1 自适应均衡 9.6.2 波束形成 9.6.3 在雷达信号检测中的应用 9.6.4 在时频分析中的应用 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值