移动应用中的人工智能伦理、公平性与隐私保护
1. 人工智能服务与远程推理
在人工智能应用中,TensorFlow Serving 提供了一个通过 HTTP 接口访问模型的环境。其操作步骤如下:
1. 安装并配置 TensorFlow Serving。
2. 将模型部署到 TensorFlow Serving。
3. 构建简单的 Android 和 iOS 应用,这些应用接收用户输入,将其转换为 JSON 负载,发送到 TensorFlow Serving 实例,并解析包含模型对原始数据推理结果的返回值。
这种方式虽然基础,但为各种服务场景提供了框架,即创建带有 JSON 负载的 POST 请求并解析响应。
2. 人工智能中的伦理、公平性与隐私问题
2.1 潜在的偏见问题
在计算机系统中,不公平和偏见一直是需要关注的问题。例如,公司为了拓展特定邮编区域的客户,可能会向该区域有联系但未购买的客户发送折扣券,代码如下:
SELECT * from Customers WHERE ZIP=target_zip AND PURCHASES=0
然而,如果该邮编区域的居民大多属于特定种族或年龄段,这种做法可能会过度针对某一群体,甚至歧视其他群体,长期来看会导致客户群体与社会人口结构失衡。
2.2 负责任的人工智能实践步骤
构建负责任的人工智能系统,需要在机器学习工作流程的每个步骤中融入相关实践,具体步骤如下:
1. 定义问题:明确机器学习系统的服务对象。
2. 构建和准备数据。
3. 构建和训练模型。
4. 评估模型。
5. 部署和监控模型的使用。
2.3 负责任地定义问题
创建应用时,要考虑应用本身可能带来的问题。例如,一个鸟叫探测器应用,如果数据仅来自特定区域的鸟类,而该区域主要由单一群体居住,那么这个应用可能只对该群体可用,并且没有考虑到听力障碍用户的需求。
为了避免无意识地引入偏见,谷歌推出了《People + AI Guidebook》,它包含六个章节,能帮助开发者理解用户需求、定义成功标准、进行数据准备、模型构建以及公平地收集反馈等。此外,还有一套 AI Explorables 交互式工作簿,可帮助开发者发现数据中的隐藏偏见,并制定模型部署后的测试策略。
2.4 避免数据中的偏见
并非所有数据偏见都容易被发现。比如在一个学生竞赛中,参与者使用生成对抗网络(GANs)根据人脸的上半部分预测下半部分,但由于使用的 IMDb 人脸数据集大多不是日本人,导致模型对日本人脸的预测效果不佳。
为了避免数据偏见,可以使用以下工具:
2.4.1 What - If 工具
谷歌的 What - If 工具可以让开发者以最少的编码检查机器学习模型。它能同时检查数据和模型对该数据的输出。例如,使用基于 1994 年美国人口普查数据集训练的模型预测个人收入,在模拟的抵押贷款申请场景中,如果用户得分 0.528 可能会被拒绝贷款,但通过改变用户的年龄(如从 42 岁变为 48 岁),得分会超过 0.5 阈值,从而从拒绝变为接受,这表明模型可能存在年龄偏见。该工具还能找到最近的反事实数据,帮助开发者深入挖掘数据或模型架构中的偏见。
2.4.2 Facets 工具
Facets 工具与 What - If 工具互补,通过可视化帮助开发者深入了解数据。它可以帮助开发者确定每个特征在不同数据子集(如训练集、测试集、验证集)中的覆盖情况。例如,在使用美国人口普查数据集时,发现资本收益和资本损失特征可能会对训练产生偏差,因为大部分数据点为零,但有少数值非常高,这可能会引入对一小部分人群的偏见。
Facets 还包含 Facets Dive 工具,可根据多个轴可视化数据集内容,帮助识别数据集中的错误或现有偏见。例如,按目标、教育水平和性别拆分数据集后,发现男性高收入的概率普遍高于女性,特别是在高教育水平下,这种差距更加明显,这可能是模型存在偏见的信号。
2.4.3 TensorFlow 模型卡片工具包
如果要发布模型供他人使用,TensorFlow 模型卡片工具包可以提供模型元数据的上下文和透明度。例如,在著名的猫狗图像分类模型中,模型卡片可以显示数据划分情况,发现数据集中狗的数量多于猫,从而引入了偏见。同时,模型卡片还能提醒使用者模型可能存在的伦理问题,如将不包含猫狗的图像误分类可能会造成伤害。
2.4.4 TensorFlow 数据验证
如果使用 TensorFlow Extended (TFX) 并将数据放入 TFX 管道,其中的组件可以分析和转换数据,帮助发现缺失数据、异常值等问题。开发者可以通过查看 TFDV 指南了解更多信息。
2.5 构建和训练模型的考虑因素
2.5.1 模型修复
创建模型时可能会在某些数据切片上表现不佳,导致结果出现偏差。通常有三种方法可以解决这个问题:
1. 更改输入数据。
2. 通过更新模型架构进行干预。
3. 对结果进行后处理。
可以使用 MinDiff 方法来均衡数据分布,平衡不同数据切片的错误率。例如,在未应用 MinDiff 算法时,两个不同数据切片的预测结果差异很大,但应用后预测曲线更加接近。
2.5.2 模型隐私
为了防止攻击者通过模型推断训练数据,可使用差分隐私技术训练模型。TensorFlow Privacy 提供了使用差分隐私训练模型的优化器实现。
2.5.3 联邦学习
联邦学习对移动开发者来说很有吸引力,它可以根据用户的使用情况不断更新和改进模型。例如,键盘自动预测功能可以根据用户的输入习惯提供更准确的建议。虽然目前联邦学习还没有开放 API,但可以使用 TensorFlow Federated 进行模拟。TensorFlow Federated 是一个开源框架,包含两个核心 API:
1. 联邦学习 API:为现有模型添加联邦学习和评估功能。
2. 联邦核心 API:在函数式编程环境中实现联邦通信操作,是谷歌键盘 Gboard 等现有部署场景的基础。
下面是一个简单的 mermaid 流程图,展示了构建负责任的人工智能系统的主要步骤:
graph LR
A[定义问题] --> B[构建和准备数据]
B --> C[构建和训练模型]
C --> D[评估模型]
D --> E[部署和监控模型使用]
通过使用上述工具和方法,可以在构建和使用人工智能系统时更好地避免偏见,保护用户隐私,实现公平和负责任的人工智能应用。
3. 工具与方法总结
为了更清晰地展示在移动应用中处理人工智能伦理、公平性与隐私保护所涉及的工具和方法,下面以表格形式进行总结:
|工具/方法|功能|操作步骤|
| ---- | ---- | ---- |
|TensorFlow Serving|通过 HTTP 接口访问模型|1. 安装并配置 TensorFlow Serving;2. 部署模型到 TensorFlow Serving;3. 构建 Android 或 iOS 应用,接收用户输入,转换为 JSON 负载,发送到 TensorFlow Serving 实例并解析返回值|
|People + AI Guidebook|帮助理解用户需求、定义成功标准等|阅读六个章节内容,从理解用户需求开始,贯穿数据准备、模型构建、反馈收集等环节|
|AI Explorables|发现数据中的隐藏偏见,制定模型部署后测试策略|使用交互式工作簿,分析数据和模型训练后的行为|
|What - If 工具|以最少编码检查机器学习模型,发现潜在偏见|1. 选择推理值,查看导致该推理的数据集数据点;2. 更改用户数据,观察对推理的影响;3. 查找最近的反事实数据|
|Facets 工具|通过可视化深入了解数据,确定特征覆盖情况|使用该工具分析数据在不同子集(训练、测试、验证等)中的分布,识别可能的偏差信号|
|Facets Dive 工具|可视化数据集内容,识别错误或现有偏见|按目标、教育水平、性别等多个轴拆分数据集进行观察|
|TensorFlow 模型卡片工具包|为发布的模型提供元数据上下文和透明度|在发布模型时,使用该工具生成模型卡片,展示数据划分、潜在伦理问题等信息|
|TensorFlow 数据验证(TFX 组件)|分析和转换数据,发现缺失数据、异常值等|将数据放入 TFX 管道,利用其中组件进行数据检查|
|MinDiff 方法|均衡数据分布,平衡不同数据切片错误率|在模型训练时应用 MinDiff 算法,使不同数据切片的预测结果更接近|
|差分隐私(TensorFlow Privacy)|防止攻击者推断训练数据|使用 TensorFlow Privacy 提供的优化器进行差分隐私训练|
|联邦学习(TensorFlow Federated)|根据用户使用情况更新和改进模型|使用 TensorFlow Federated 的两个核心 API(联邦学习 API 和联邦核心 API)进行模拟操作|
4. 案例分析
4.1 疾病诊断模型案例
假设有一个疾病诊断模型,在训练过程中发现对男性和女性的诊断准确率较高,但对非二元性别人群的诊断效果不佳。这可能是由于训练数据中缺乏非二元性别人群的样本。
-
问题分析
:模型在某些数据切片(非二元性别人群)上表现不佳,存在潜在的公平性问题。
-
解决方案
:可以采用 MinDiff 方法,在训练时均衡不同性别群体的数据分布,使模型在各个群体上的错误率更加平衡。具体操作步骤如下:
1. 收集更多非二元性别人群的样本数据,扩充训练集。
2. 在训练过程中应用 MinDiff 算法,调整模型参数,使不同性别群体的预测结果分布更加接近。
3. 对调整后的模型进行评估,检查不同群体的诊断准确率是否得到改善。
4.2 键盘自动预测案例
以键盘自动预测功能为例,不同用户的输入习惯差异很大。如果模型不能根据用户的个性化需求进行调整,可能会导致预测不准确。
-
问题分析
:模型缺乏对用户个性化数据的学习,无法提供精准的预测。
-
解决方案
:可以采用联邦学习的方法。具体操作步骤如下:
1. 当用户在键盘上输入时,收集用户的输入数据,但数据保留在用户设备上。
2. 设备端根据本地数据对模型进行局部更新。
3. 将更新后的模型参数发送到服务器,服务器聚合多个用户的参数更新全局模型。
4. 将更新后的全局模型分发给用户设备,实现模型的不断优化。
下面是一个 mermaid 流程图,展示联邦学习的基本流程:
graph LR
A[用户设备] --> B[本地数据收集]
B --> C[本地模型更新]
C --> D[发送参数到服务器]
D --> E[服务器聚合参数]
E --> F[更新全局模型]
F --> G[分发全局模型到用户设备]
G --> A
5. 总结
在移动应用的人工智能开发中,伦理、公平性与隐私保护是至关重要的方面。通过使用 TensorFlow Serving 等工具实现模型的有效服务和远程推理,利用 People + AI Guidebook、What - If 工具、Facets 工具等发现和解决潜在的偏见问题,采用 MinDiff 方法、差分隐私和联邦学习等技术优化模型性能和保护用户隐私,可以构建更加公平、负责任的人工智能应用。开发者在实际应用中应综合运用这些工具和方法,充分考虑各种因素,确保人工智能系统的健康发展和用户权益的保护。