python的numpy模块

本文介绍了如何使用numpy库在Python中创建数组,包括多维数组、等差数组和随机数组的生成方法,以及查看和操作数组的属性如形状、元素个数、数据类型、维度和元素选取。后续还将涉及数组的转置、重塑和处理缺失值等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.array函数:

该函数可以基于序列型的对象(如列表、元组、合集等,还可以是一个已经创建好的数组)创建任意维度的数组。

如果要创建多维数组,可以为array函数传入一个嵌套列表作为参数

但是要注意:同一个数组中各个元素的数据类型必须相同

import numpy as np

test=np.array([[1,2,3],[4,5,6],[7,8,9]])

print(test)
//创建一个二维数组

2.创建等差数组

使用arange()函数创建等差序列。如果只是在arange函数的括号里输入一个参数,则arange()函数将此参数作为结束值,默认起始值为0,步长为1

import numpy as np 
d=np.arange(1,50,10)
#创建一个在[1,50)范围之内,步长为10的等差数组
print(d)
d=np.arange(30)#只给一个参数是默认起始值为0步长为1
print(d)

3.创建随机数组

#可以使用random中的函数,主要有rand(),randn(),randint()函数。

1.用rand创建的数组中每个元素都是0-1(不包含1)区间内的随机数。如果给rand函数传入一对参数值,就会生成一个相应行、列数的二维数组区间

#创建随机数组
test=np.random.rand(2)
print(test)
# 创建一个两行三列的二维数组
test1=np.random.rand(2,3)
print(test1)

#运行结果:
[0.01420176 0.80926308]
[[0.3996319  0.45764903 0.34558934]
 [0.3395757  0.52181097 0.60889517]]

2.用randn函数创建的数组中的元素是符合标准正态分布(均值为0,标准差为1)的随机数

test=np.random.randn(3)
print(test)

# 创建一个二维数组
test1=np.random.randn(2,3)
print(test1)

//运行结果
[ 0.3966709  -1.23312955  1.10705168]
[[ 0.71492497  2.79399462  0.16149515]
 [ 0.58510527  0.61612027 -0.93624645]]

3.用randint函数创建的数组中的元素是指定范围内的随机整数。常用的有三个参数最后一个是元素个数或者维度,前两个是范围

test=np.random.randint(1,4,8)
表示创建一个从1-4(不包括4)的有8个元素的数组
print(test)

test1=np.random.randint(1,12,(4,3))
表示创建一个4行三列的二维数组
print(test1)

运行结果:
[2 1 3 3 2 3 3 2]
[[1 7 2]
 [7 6 8]
 [3 6 7]
 [3 5 8]]

3.查看数组的属性

 数组的属性主要是:数组的行列数,元素个数,元素的数据类型,数组的纬度

1.查看数组的行数和列数

数组的shape属性用于查看数组的行数和列数

.shape[0]用于查看行数,.shape[1]用于查看列数

test=np.array([[1,2,3],[2,3,45],[3,465,6]])
print(test.shape)
查看数组的行数和列数
print(test.shape[0])
查看数组的行数
print(test.shape[1])
查看数组的列数

2.查看数组元素个数

用size查看数组的大小,也就是数组元素个数

test=np.array([[1,2,3],[2,3,45],[3,465,6],[23,445,6]])
print(test.size)

结果:
12

3.查看和转换数组元素的数据类型

数组的dtype用于查看数组元素的数据类型

test=np.array([[1,2.9,3],[2,3,45],[3,465,6]])
print(test.dtype)

float64
为什么是float64是因为第一行第二列的数是2.9

使用astype函数可以将数组类型进行转换

test=np.array([[1,2.9,3],[2,3,45],[3,465,6]])
arr=test.astype(int)
通过.astype将元素类型转换为整形
print(arr)
print(arr.dtype)

[[  1   2   3]
 [  2   3  45]
 [  3 465   6]]
int32

可以看见数组中的2.9被转换为了2

 4.查看数组维数

数组的维度指的是数组是几维

在Python中,使用NumPy库创建的数组可以使用属性ndim查看维数。ndim返回一个整数,指定数组的维数。

import numpy as np
my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_array.ndim)

运行结果:
2

4.数组元素的选取

import numpy as np
my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_array[2])#表示选取第三行元素
print(my_array[:,1])#表示选取第二列数据(所有行的第二列都会被选取上),因为没有给行设置选取范围,默认会选取所有行。

print(my_array[0:2])#选取第二行和第三行元素

print(my_array[:,1:3])#选取第二列和第三列元素
print(my_array[0:2,1:3])#选取第二行和第三列元素

print(my_array[0:2,:])#选取第二行元素

以上就是今天要分享的内容了,后续还会继续分享有关numpy中数组的转置和重塑以及添加数组元素和缺失值的处理内容。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值