1.array函数:
该函数可以基于序列型的对象(如列表、元组、合集等,还可以是一个已经创建好的数组)创建任意维度的数组。
如果要创建多维数组,可以为array函数传入一个嵌套列表作为参数
但是要注意:同一个数组中各个元素的数据类型必须相同
import numpy as np
test=np.array([[1,2,3],[4,5,6],[7,8,9]])
print(test)
//创建一个二维数组
2.创建等差数组
使用arange()函数创建等差序列。如果只是在arange函数的括号里输入一个参数,则arange()函数将此参数作为结束值,默认起始值为0,步长为1
import numpy as np
d=np.arange(1,50,10)
#创建一个在[1,50)范围之内,步长为10的等差数组
print(d)
d=np.arange(30)#只给一个参数是默认起始值为0步长为1
print(d)
3.创建随机数组
#可以使用random中的函数,主要有rand(),randn(),randint()函数。
1.用rand创建的数组中每个元素都是0-1(不包含1)区间内的随机数。如果给rand函数传入一对参数值,就会生成一个相应行、列数的二维数组区间
#创建随机数组
test=np.random.rand(2)
print(test)
# 创建一个两行三列的二维数组
test1=np.random.rand(2,3)
print(test1)
#运行结果:
[0.01420176 0.80926308]
[[0.3996319 0.45764903 0.34558934]
[0.3395757 0.52181097 0.60889517]]
2.用randn函数创建的数组中的元素是符合标准正态分布(均值为0,标准差为1)的随机数
test=np.random.randn(3)
print(test)
# 创建一个二维数组
test1=np.random.randn(2,3)
print(test1)
//运行结果
[ 0.3966709 -1.23312955 1.10705168]
[[ 0.71492497 2.79399462 0.16149515]
[ 0.58510527 0.61612027 -0.93624645]]
3.用randint函数创建的数组中的元素是指定范围内的随机整数。常用的有三个参数最后一个是元素个数或者维度,前两个是范围
test=np.random.randint(1,4,8)
表示创建一个从1-4(不包括4)的有8个元素的数组
print(test)
test1=np.random.randint(1,12,(4,3))
表示创建一个4行三列的二维数组
print(test1)
运行结果:
[2 1 3 3 2 3 3 2]
[[1 7 2]
[7 6 8]
[3 6 7]
[3 5 8]]
3.查看数组的属性
数组的属性主要是:数组的行列数,元素个数,元素的数据类型,数组的纬度
1.查看数组的行数和列数
数组的shape属性用于查看数组的行数和列数
.shape[0]用于查看行数,.shape[1]用于查看列数
test=np.array([[1,2,3],[2,3,45],[3,465,6]])
print(test.shape)
查看数组的行数和列数
print(test.shape[0])
查看数组的行数
print(test.shape[1])
查看数组的列数
2.查看数组元素个数
用size查看数组的大小,也就是数组元素个数
test=np.array([[1,2,3],[2,3,45],[3,465,6],[23,445,6]])
print(test.size)
结果:
12
3.查看和转换数组元素的数据类型
数组的dtype用于查看数组元素的数据类型
test=np.array([[1,2.9,3],[2,3,45],[3,465,6]])
print(test.dtype)
float64
为什么是float64是因为第一行第二列的数是2.9
使用astype函数可以将数组类型进行转换
test=np.array([[1,2.9,3],[2,3,45],[3,465,6]])
arr=test.astype(int)
通过.astype将元素类型转换为整形
print(arr)
print(arr.dtype)
[[ 1 2 3]
[ 2 3 45]
[ 3 465 6]]
int32
可以看见数组中的2.9被转换为了2
4.查看数组维数
数组的维度指的是数组是几维
在Python中,使用NumPy库创建的数组可以使用属性ndim查看维数。ndim返回一个整数,指定数组的维数。
import numpy as np
my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_array.ndim)
运行结果:
2
4.数组元素的选取
import numpy as np
my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(my_array[2])#表示选取第三行元素
print(my_array[:,1])#表示选取第二列数据(所有行的第二列都会被选取上),因为没有给行设置选取范围,默认会选取所有行。
print(my_array[0:2])#选取第二行和第三行元素
print(my_array[:,1:3])#选取第二列和第三列元素
print(my_array[0:2,1:3])#选取第二行和第三列元素
print(my_array[0:2,:])#选取第二行元素
以上就是今天要分享的内容了,后续还会继续分享有关numpy中数组的转置和重塑以及添加数组元素和缺失值的处理内容。