Lecture 1 Introduction of Machine Deep Learning

Lecture 1: Introduction of Machine / Deep Learning

Chapter 1 Introduction

Machine Learning ≈ \approx Looking for Function

image-20220815174228400

Different types of Functions

Regression

The function outputs a scalar.

image-20220815174805442

Classification

Given options (classes), the function outputs the correct one.

image-20220815175034397

Structured Learning

create something with structure (image, document) 让机器学会输出一些有特定结构的东西(例如,图片、文档等)

这部分的机器学习任务占比更高。

How to find a function? A Case Study

Function with Unknown Parameters

image-20220815191634539

Define Loss from Training Data

image-20220815192348620 image-20220815192553159 image-20220815192817393

Optimization

w ∗ , b ∗ = arg ⁡ min ⁡ w , b L w^*,b^*=\arg \min_{w,b} L w,b=argw,bminL

Gradient Descent

单个参数做梯度下降,比如将 b b b 作为常数处理

image-20220815193233504 image-20220815193343250 image-20220815193942256

两个参数做梯度下降

image-20220815194225594 image-20220815194404519

Training Procedure of Machine Learning

image-20220815194741252

Linear models are too simple, we need more sophisticated modes.

image-20220815211108844
Sigmoid Function
image-20220815212642217 image-20220815212749666
Training Procedure of Machine Learning

Step 1 Function

image-20220815234101523 image-20220816000200781 image-20220816000444109 image-20220816000701349 image-20220816000823673

未知参数都统称为 θ \theta θ

image-20220816001116247

Step 2 Loss

  • Loss is a function of parameters L ( θ ) L(\theta) L(θ);
  • Loss means how good a set of value is.
image-20220816001800522

Step 3 Optimization
θ ∗ = arg ⁡ min ⁡ θ L ,   θ = [ θ 1 θ 2 θ 3 ⋮ ] . \theta^*=\arg \min_{\theta}L,\ \theta= \begin{bmatrix} \theta_1\\ \theta_2\\ \theta_3\\ \vdots \end{bmatrix}. θ=argθminL, θ= θ1θ2θ3 .
image-20220816002328399

image-20220816002737384 image-20220816002959065
ReLU (Rectified Linear Unit)
image-20220816003339626 image-20220816003603559 image-20220816004342245

Backpropagation

Gradient Descent

image-20220816162213778
Chain Rule
image-20220816162506285

Forward and Backward Pass

image-20220816163351669 image-20220816163708243
Forward Pass
image-20220816164704016 image-20220816175358862
Backward Pass
image-20220816180907631 image-20220816180422717 image-20220816180742883 image-20220816181436086 image-20220816181902269 image-20220816182223946 image-20220816182223946

Summary

image-20220816182808318
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值