python推荐系统学习笔记(5)——基于图的模型推荐算法

本文介绍了如何将用户行为数据表示为二分图,并详细阐述了基于图的推荐算法,特别是personalrank算法的工作原理。通过随机游走计算物品节点的访问概率,形成推荐列表。虽然PersonalRank算法时间复杂度高,但可以通过减少迭代次数和优化矩阵运算来提高效率。
摘要由CSDN通过智能技术生成

python推荐系统学习笔记(5)——基于图的模型推荐算法

2.1 用户行为数据的二分图表示

为可以把基于邻域的模型看作基于图的模型的简单形式。
用户物品二分图模型
在这里插入图片描述
对于数据集中每一个二元组(u,i),图中都有一套对应的边e(vu,vi),其中vu属于vu 是用户u对应的顶点,vi属于VI是物品对应的顶点。

2.2 基于图的推荐算法

给用户u推荐物品的任务就可以转化为度量用户顶点vu 和与vu没有边直接相连的物品节点在图上的相关性,相关性越高的物品在推荐列表中的权重就越高。
图中顶点的相关性主要因素: 
l 两个顶点之间的路径数; 
l 两个顶点之间路径的长度; 
l 两个顶点之间的路径经过的顶点。
而相关性高的一对顶点一般具有如下特征: 
两个顶点之间有很多路径相连; 
连接两个顶点之间的路径长度都比较短; 
连接两个顶点之间的路径不会经过出度比较大的顶点。
2.2.1 基于图的推荐算法示例
如上右边的图形所示,用户A和物品c、e没有边相连,但是用户A和物品c有两条长度为3的路径相连(A->a->B->c、A->d->D->c),用户A和物品e有两条长度为3的路径相连(A->d->D->e、A->b->C->e)。
对于用户A和物品e来说:
(A, b, C, e)路径经过的顶点的出度为(3, 2, 2, 2),而(A, d, D, e)路径经过的顶点的出度为(3, 2, 3, 2)。因此,(A, d, D, e)经过了一个出度比较大的顶点D,所以(A, d, D, e)对顶点A与e之间相关性的贡献要小于(A, b, C, e)。
对于用户A和物品c来说:
(A, a, B, c) 路径经过的顶点的出度为(3, 2, 2, 2),而(A, d, D, c) 路径经过的顶点的出度为(3, 2, 3, 2)。

2.3 基于随机游走的personalrank算法

假设要给用户进行个性化推荐,可以从用户u对应的节点vu开始在用户物品二分图上进行随机游走。游走到任何一个节点时,首先按照概率 α 决定是继续游走,还是停止这次游走并从节点vu开始重新游走。如果决定继续游走,那么就从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品节点被

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值