python 一个画布画多个图,并添加图序号

labels =['1','2','3','4','5']
data = [[1,2,3,4,5],[5,6,7,8,9,],[10,11,12,13],[15,16,17,18,19]]

import matplotlib.pyplot as plt

config = {
    "font.family":'Times New Roman',  # 设置字体类型
    "font.size":10
#     "mathtext.fontset":'stix',
}
rcParams.update(config)

fig, axs = plt.subplots(2, 2, figsize=(8, 15)) #创建一个2*2排列的4个子图,如果想上下一列排列则(4,1)

axs[0,0].bar(labels, data[0])   #axs[0,0] 根据坐标选择哪个子图
axs[0,0].set_ylabel('a')  #设置横坐标题
axs[0,0].set_xlabel('b')  #设置纵坐标题
axs[0,0].set_title('bar') #设置图标题
axs[0,0].text(-1, 5.4, 'A', va='bottom', ha='right')  #根据x,y坐标位置设置图标号A的位置
for i,j in zip(labels,data[0]):  #添加数据标签
    axs[0,0].text(float(i)-1.5,float(j)+0.1,str('%.1f' % j)+'%')  #移动数据标签位置
axs[0,0].plot(labels,data[0],'black',marker='o',markersize=4) #添加数据连接线

#其他子图类似操作
axs[0,1].bar(labels, data[1])   
axs[0,1].text(-1, 9.7, 'B', va='bottom', ha='right') 

fig.tight_layout() 
plt.show()

 

### 回答1: MatplotlibPython编程语言中一个广泛使用的数据可视化库。使用Matplotlib,我们可以在一个画布上同时绘制不同的形或表。 Matplotlib画布是由Figure对象管理的,每个Figure对象可以拥有多个。我们可以通过添加来创建多个形展现在同一张画布上。在Matplotlib中,子通常被称为Axes对象。 我们可以使用subplot()函数创建子。该函数中的三个参数分别表示行数、列数和子的索引。例如,subplot(2,2,1)表示在一个2行2列的画布上创建4个子,然后选择其中的第一个。 我们也可以使用add_subplot()函数创建子。该函数中的两个参数分别表示行数和列数,且每次调用该函数都会在画布添加一个新的子。 除了subplot()和add_subplot()函数,我们还可以使用subplots()函数直接创建包含多个画布对象。 在使用Matplotlib绘制多个形时,我们还需要注意对每个形的标签、标题、轴标签等进行设置,以便于读者更加方便的理解形的含义。 ### 回答2: Matplotlib一个数据可视化的Python库,可以用来绘制各种类型的表和形。可以使用同一个画布来绘制多个表和形,这样可以方便地将它们排列在一个页面上,进行比较和分析。在Matplotlib中,可以使用subplot函数来创建子,这样就可以在同一个画布上绘制多个表和形。 首先,需要导入Matplotlib库和pyplot模块: import matplotlib.pyplot as plt 然后,可以使用subplot函数来创建子。subplot函数有三个参数,第一个参数表示子的行数,第二个参数表示子的列数,第三个参数表示当前子序号。可以使用for循环来遍历所有子序号在每个子中绘制相应的表和形。 例如,以下代码创建了一个包含4个子画布,它们分别显示正弦曲线、余弦曲线、正切曲线和双曲正切曲线: import numpy as np x = np.linspace(0, 2 * np.pi, 100) sin_y = np.sin(x) cos_y = np.cos(x) tan_y = np.tan(x) tanh_y = np.tanh(x) plt.subplot(2, 2, 1) plt.plot(x, sin_y) plt.title("Sine") plt.subplot(2, 2, 2) plt.plot(x, cos_y) plt.title("Cosine") plt.subplot(2, 2, 3) plt.plot(x, tan_y) plt.title("Tangent") plt.subplot(2, 2, 4) plt.plot(x, tanh_y) plt.title("Hyperbolic Tangent") plt.show() 通过这种方式,可以在同一个画布上绘制多个表和形,这样可以方便地进行比较和分析,节省页面空间。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值