OpenMP编程(2)—并行区域(Parallel Region)

1. 并行区域(Parallel Region)概念
  • 并行区域是由多个线程执行的代码块,是基本的OpenMP并行结构。
  • 当一个线程到达并行指令时,它将创建一组线程并成为主(master)线程,其线程号为0。
  • 从这个并行区域开始,代码被复制,所有线程都将执行该代码。
  • 在并行区域的结尾有一个隐含的屏障(barrier),超过此点后只有主线程继续执行。
  • 如果任何线程在一个并行区域内终止,那么该组的所有线程都将终止。
2. 并行区域语法格式
#pragma omp parallel [clause ...]  newline 
                     if (scalar_expression) 
                     private (list) 
                     shared (list) 
                     default (shared | none) 
                     firstprivate (list) 
                     reduction (operator: list) 
                     copyin (list) 
 
   structured_block
3. 并行区域的代码示例
	int nthreads, tid;

	// fork一组线程,并且给每个线程自己独立的变量拷贝 
#pragma omp parallel private(tid)
	{
		// 获取并打印线程id
		tid = omp_get_thread_num();
		printf("Hello World from thread = %d\n", tid);
		 
		// 主要线程的线程id为0,因此只有主线程执行该代码
		if (tid == 0) 
		{
			nthreads = omp_get_num_threads();
			printf("Number of threads = %d\n", nthreads);
		}
	}  // 所有线程join主线程并结束

运行结果如下。
在这里插入图片描述

4. 并行区域的更多设置
4.1 设置并行区域的线程数

决定并行区域线程数的优先级由高到底如下:

  • 调用库函数omp_set_num_threads()设置的线程数
  • 环境OMP_NUM_THREADS设置的线程数
  • 默认情况下,线程数与CPU核的个数相同
    线程号从 0 (主线程)依次到 N-1
    设置线程数的代码如下。
	int nthreads, tid;

	omp_set_num_threads(6); //设置线程数为6个
	// fork一组线程,并且给每个线程自己独立的变量拷贝 
#pragma omp parallel private(tid)
	{

		// 获取并打印线程id
		tid = omp_get_thread_num();
		printf("Hello World from thread = %d\n", tid);
		 
		// 主要线程的线程id为0,因此只有主线程执行该代码
		if (tid == 0) 
		{
			nthreads = omp_get_num_threads();
			printf("Number of threads = %d\n", nthreads);
		}

	}  // 所有线程join主线程并结束

运行结果如下,并行区域的线程数为6个
在这里插入图片描述

4.2 设置并行区域动态分配线程

可通过调用库函数omp_get_dynamic来确定是否设置了动态分配线程
如果是TRUE,那么运行时会根据系统资源等因素进行调整分配线程数;如果是FALSE,那么就按照前面的分配原则去确定实际生成的线程数量
有两种方式设置动态生成线程,按照优先级高低如下:

  • 调用库函数omp_set_dynamic
  • 设置环境OMP_DYNAMIC
    当动态生成线程被设置TRUE时,前面的静态分配线程数不再起作用,代码示例如下
	int nthreads, tid;
	
	omp_set_dynamic(1); //启用动态分配线程数
	omp_set_num_threads(6); //设置线程数为6个
	// fork一组线程,并且给每个线程自己独立的变量拷贝 
#pragma omp parallel private(tid)
	{

		// 获取并打印线程id
		tid = omp_get_thread_num();
		printf("Hello World from thread = %d\n", tid);
		 
		// 主要线程的线程id为0,因此只有主线程执行该代码
		if (tid == 0) 
		{
			nthreads = omp_get_num_threads();
			printf("Number of threads = %d\n", nthreads);
		}

	}  // 所有线程join主线程并结束

运行结果如下,可见线程数并没有按照omp_set_num_threads设置为6个,而由于omp_set_dynamic设置为true,系统根据cpu核个数分配了4个线程
在这里插入图片描述

4.3 设置是否允许并行区域嵌套

并行区域嵌套就是在一个并行区域中再嵌套一个并行区域
可通过调用库函数omp_get_nested来确定是否设置了允许并行区域嵌套
有两种方式设置是否允许并行区域嵌套,按照优先级如下

  • 调用库函数omp_set_nested
  • 设置环境变量OMP_NESTED
    对于如下的并行区域嵌套代码示例
	omp_set_nested(1); //设置允许并行嵌套
#pragma omp parallel private(out_tid)
	{
		// 获取并打印外层线程id
		out_tid = omp_get_thread_num();
		printf("Hello World from out_thread = %d\n", out_tid);

		// 主要线程的线程id为0,因此只有主线程执行该代码
		if (out_tid == 0) 
		{
			out_nthreads = omp_get_num_threads();
			printf("Number of out_threads = %d\n", out_nthreads);
		}

		int in_nthreads, in_tid;
#pragma omp parallel private(in_tid)
		{
			// 获取并打印内层线程id
			in_tid = omp_get_thread_num();
			printf("Hello World from in_thread = %d, out_thread = %d\n", in_tid, out_tid);

			// 主要线程的线程id为0,因此只有主线程执行该代码
			if (in_tid == 0) 
			{
				out_nthreads = omp_get_num_threads();
				printf("Number of in_threads = %d, out_thread = %d\n", in_nthreads, out_tid);
			}
		}

	}  // 所有线程join主线程并结束

当调用omp_set_nested(0)禁用并行区域嵌套时,内层嵌套并没有生成新的线程
在这里插入图片描述
当调用omp_set_nested(1)允许并行区域嵌套时,外层线程组的每个线程,都对应生成了内层线程组
在这里插入图片描述

4.4 IF子句

当IF子句计算结果必须为TRUE(C/C++中非零)时,才会在并行区域中创建多个线程。否则,该并行区域由主线程串行执行。
代码示例如下

	int nthreads, tid;
	
	bool bParallelRegion = false; //是否多线程执行并行区域

	// fork一组线程,并且给每个线程自己独立的变量拷贝 
#pragma omp parallel private(tid) if(bParallelRegion)
	{

		// 获取并打印线程id
		tid = omp_get_thread_num();
		printf("Hello World from thread = %d\n", tid);
		 
		// 主要线程的线程id为0,因此只有主线程执行该代码
		if (tid == 0) 
		{
			nthreads = omp_get_num_threads();
			printf("Number of threads = %d\n", nthreads);
		}

	}  // 所有线程join主线程并结束

运行结果如下,由于if子句中为false,并行区域中只有主线程执行
在这里插入图片描述

5 注意事项
  • 一个并行区域不能跨越多个函数或多个代码文件的结构块
  • 跳转进入或离开平行区域是不合法的
  • 一个并行区域只允许有一个IF子句
展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。

实用主义学Python(小白也容易上手的Python实用案例)

12-24
原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会  【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值