Perron–Frobenius theorem

Perron–Frobenius theorem:

证明方阵,如果其行列的元素为正值,则存在最大的特征值,并且特征向量的每个元素是正的。这个原理应用在统计推断,经济,人口统计学,搜索引擎的基础。
PF原理:说明了最大特征值的作用和实对称矩阵的作用。
如果临界矩阵A是个实对称矩阵,则具有下列性质:
1.There is a positive real number  r, called the  Perron root or the  Perron–Frobenius eigenvalue, such that  r is an eigenvalue of  A and any other eigenvalue  λ (possibly, complex) is strictly smaller than  r in  absolute value, | λ| <  r. Thus, the  spectral radius ρ( A) is equal to  r.
2.The Perron–Frobenius eigenvalue is simple:  r is a simple root of the  characteristic polynomial of  A. Consequently,  eigenspace associated to  r is one-dimensional. (Same is true for the left eigenspace i.e. eigenspace for  AT.)
3.There exists an eigenvector  v = ( v 1,…, v n) of  A with eigenvalue  r such that all components of v are positive:  A v =  r vv i > 0 for 1 ≤  i ≤  n. (Respectively exists positive left eigenvector  w :  wT A =  r wTw i > 0.)转置就可以了。
4.There are no other positive (moreover non-negative) eigenvectors except  v (respectively the left eigenvectors except  w). I.e. all other eigenvectors must have at least one negative or complex component.
5.  /lim_{k /rightarrow /infty} A^k/r^k = v w^T, where the left and right eigenvectors for  A are normalized so that wTv = 1. Moreover the matrix  v wT is the  spectral projection corresponding to  r, such projection is called the  Perron projection.
6. Collatz–Wielandt formula: for all non-negative non-zero vectors  x let  f( x) be the minimum value of [ Ax] i /  x i taken over all those  i such that  xi ≠ 0. Then  f is a real valued function whose  maximum is the Perron–Frobenius eigenvalue.
7.Min-max Collatz–Wielandt formula is similar to the one above: for all strictly positive vectors  x (pay attention that one above required only non-negativity here) let  g( x) be the maximum value of [ Ax] i /  x i taken over  i. Then  g is a real valued function whose  minimum is the Perron–Frobenius eigenvalue.
8.The Perron–Frobenius eigenvalue satisfies the inequalities:
因为在科研中,比如计算pagerank,希望向量的每个值都是正的,在这里我着重介绍定理1,4的证明:
定理四启发式证明:由于不同特征值对应的特征向量是正交的,所以如果有一个特征值对应的特征向量的每个元素大于零,则其余的特征向量的分量要不然是负数要不然就是复数。
数学证明:设  (λ, y)为A的一个特征值和特征向量,(r, x)为A的另一个特征值和特征向量。则r xt y = (xt A) y= xt (A y)=λ xt y。所以r=λ。

定理一证明:矩阵除以矩阵的普半径,最大特征值在半径为1的单位园上。假设有不止一个特征值在这个单位圆上,最后得出矛盾来证明。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值