【NOI2010】能量采集 题解

推荐在 cnblogs 上阅读。

【NOI2010】能量采集 题解

谨纪念我的第一道手推出来的莫反题。

题目大意:已知 n n n m m m,求 ∑ i = 1 n ∑ j = 1 m ( 2 ⋅ gcd ⁡ ( i , j ) − 1 ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m(2\cdot \gcd(i,j)-1) i=1nj=1m(2gcd(i,j)1)

首先变形一手:

∑ i = 1 n ∑ j = 1 m ( 2 ⋅ gcd ⁡ ( i , j ) − 1 ) = 2 ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) − n × m \sum\limits_{i=1}^n\sum\limits_{j=1}^m(2\cdot\gcd(i,j)-1)=2\sum\limits_{i=1}^n\sum\limits_{j=1}^m\gcd(i,j)-n\times m i=1nj=1m(2gcd(i,j)1)=2i=1nj=1mgcd(i,j)n×m

然后我们只用求出中间那两个 ∑ \sum 就好了。

∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) = ∑ i = 1 n ∑ j = 1 m ∑ d = 1 n d [ gcd ⁡ ( i , j ) = d ] = ∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ x ∣ gcd ⁡ ( i , j ) μ ( x ) = ∑ d = 1 n d ∑ x = 1 ⌊ n d ⌋ μ ( x ) ⌊ n d x ⌋ ⌊ m d x ⌋ \begin{aligned} \sum\limits_{i=1}^n\sum\limits_{j=1}^m\gcd(i,j)&=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{d=1}^nd[\gcd(i,j)=d]\\ &=\sum\limits_{d=1}^nd\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]\\ &=\sum\limits_{d=1}^nd\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum\limits_{x|\gcd(i,j)}\mu(x)\\ &=\sum\limits_{d=1}^nd\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor} \mu(x)\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dx}\rfloor \end{aligned} i=1nj=1mgcd(i,j)=i=1nj=1md=1nd[gcd(i,j)=d]=d=1ndi=1dnj=1dm[gcd(i,j)=1]=d=1ndi=1dnj=1dmxgcd(i,j)μ(x)=d=1ndx=1dnμ(x)dxndxm

T = d x T=dx T=dx

∑ d = 1 n d ∑ x = 1 ⌊ n d ⌋ μ ( x ) ⌊ n d x ⌋ ⌊ m d x ⌋ = ∑ d = 1 n d ∑ T = 1 n μ ( T d ) ⌊ n T ⌋ ⌊ m T ⌋ [ d ∣ T ] = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ d = 1 n d ⋅ μ ( T d ) [ d ∣ T ] = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ d ∣ T d ⋅ μ ( T d ) \begin{aligned} \sum\limits_{d=1}^nd\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor} \mu(x)\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dx}\rfloor &=\sum\limits_{d=1}^nd\sum\limits_{T=1}^n\mu(\frac{T}{d})\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor[d|T]\\ &=\sum\limits_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d=1}^nd\cdot\mu(\frac{T}{d})[d|T]\\ &=\sum\limits_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}d\cdot\mu(\frac{T}{d}) \end{aligned} d=1ndx=1dnμ(x)dxndxm=d=1ndT=1nμ(dT)TnTm[dT]=T=1nTnTmd=1ndμ(dT)[dT]=T=1nTnTmdTdμ(dT)

如何处理后面那个 ∑ \sum ,考虑狄利克雷卷积。不会的可以看我博客。

因为 φ ∗ I = I d 1 \varphi*I=Id_1 φI=Id1,又因 I ∗ μ = ϵ I*\mu=\epsilon Iμ=ϵ,所以

φ = I d 1 ∗ μ \varphi=Id_1*\mu φ=Id1μ

注意到右边那个 ∑ \sum 其实就是 I d 1 ∗ μ Id_1*\mu Id1μ,即 φ \varphi φ

所以可化为:

∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ d ∣ T d ⋅ μ ( T d ) = ∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ⋅ φ ( T ) \sum\limits_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}d\cdot\mu(\frac{T}{d})=\sum\limits_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\cdot\varphi(T) T=1nTnTmdTdμ(dT)=T=1nTnTmφ(T)

很明显的整除分块,预处理 φ \varphi φ 的前缀和就好了。

#include<bits/stdc++.h>
using namespace std;

#define int long long

const int N=1e5+5;

int n,m;
int cnt,pri[N],phi[N],mu[N],sum[N];
bool flg[N];

void init()
{
    mu[1]=1,phi[1]=1;
    for(int i=2;i<=N-5;i++)
    {
        if(!flg[i])
            pri[++cnt]=i,phi[i]=i-1,mu[i]=-1;
        for(int j=1;j<=cnt&&pri[j]*i<=N-5;j++)
        {
            flg[i*pri[j]]=1;
            if(i%pri[j]==0)
            {
                phi[i*pri[j]]=phi[i]*pri[j];
                break;
            }
            mu[i*pri[j]]=-mu[i];
            phi[i*pri[j]]=phi[i]*phi[pri[j]];
        }
    }
    for(int i=1;i<=N-5;i++)
        sum[i]=sum[i-1]+phi[i];
}

int work(int n,int m)
{
    if(n>m) swap(n,m);
    int res=0;
    for(int l=1,r;l<=n;l=r+1)
    {
        r=min(n/(n/l),m/(m/l));
        res+=(sum[r]-sum[l-1])*(n/l)*(m/l);
    }
    return res;
}

signed main()
{
    init();
    scanf("%lld%lld",&n,&m);
    printf("%lld\n",2*work(n,m)-n*m);
    return 0;
}
  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值