缓存穿透、缓存击穿和缓存雪崩详细聊聊
在所有开发场景中,缓存的使用已经非常普及。提升并发能力,保证系统负载。减轻数据库压力。在使用缓存过程中,也会有很多问题,今天就具体讲解一下缓存穿透、缓存击穿和缓存雪崩这几个常见问题。
一、缓存穿透
缓存本身作为大流量防止涌入数据库查询的一道防线,缓存穿透是指查询某个key,缓存中不存在, 会走数据库查询,数据库中也不存在,当大量如此请求会导致服务异常甚至宕机。
解决方案:
1.服务层面代码逻辑进行逻辑处理,比如手机号校验,身份证校验邮箱校验等等不满足规则直接返回,避免数据查询。
2.使用布隆过滤器,本质也是缓存了一个是否存在的数据,通过布隆过滤器判断是否存在该数据。
3.设置黑白名单,对不同访问情况做过滤,可以避免恶意查询。
4.在设置一些值时默认些空值等。
二、缓存击穿
缓存击穿是指查询一个key值时失效情况,此时高并发大量请求,来不及生成新的缓存,使得该缓存处于持续失效情况中,可能导致服务宕机等风险。
解决方案
1.双key,主key和备用key。主key失效用备用key。备用key不设置失效时间。
2.key不设置失效时间,后台异步更新。
3.使用互斥锁,在value中设置一个比缓存时间短的时间标识,当异步线程获取数据发现值块过期时,延长内置时间,并从数据库中重新获取数据缓存。
三、缓存雪崩
缓存雪崩一听名字就可以想到,缓存大批量的失效引起的缓存服务宕机挂掉或者不响应的情况,也会导致数据库压力巨大。
解决方案
1.双key,主key和备用key。主key失效用备用key。备用key不设置失效时间。
2.key不设置失效时间,后台异步更新。
3.缓存失效时间不设置同一时间,比如同样缓存1小时的数据,每个数据的缓存时间在55分钟到1小时之间的随机时间。
4.当缓存雪崩发生的情况下,配合网关服务和微服务架构,让服务熔断限流降级。
总结以上情况,三种情况其实都是查询缓存数据没有获取到的后续操作,对数据库或者服务有更大的压力,导致不同程度的影响。针对余不同的缓存异常情况,除了以上的处理方案,还要配合整体服务架构,熔断限流降级或者数据库层面横向拓展等措施减小对服务的影响。