【数据分析专栏之Python篇】一、全网最细Anaconda安装与配置

Anaconda是一个专注于数据分析的Python发行版,包含conda、Python等科学包。它提供包和环境管理,简化了数据分析环境的搭建。文章介绍了Anaconda、conda、pip、virtualenv的区别,以及为何选择Anaconda,详细阐述了Anaconda在Windows上的安装步骤和配置conda源的方法,强调了配置国内镜像源以提高下载速度的重要性。
摘要由CSDN通过智能技术生成

前言

大家好!本篇给大家介绍 Anaconda 安装及配置。

一、 Anaconda是什么

1.1 简介

Anaconda是一个开源的专注于数据分析的 Python 发行版本,其包含了conda、Python等190多个科学包及其依赖项。它可以便捷获取包且对包能够进行管理,同时可以对环境进行统一的管理。

1.2 特点

Anaconda具有如下特点:

  • 开源
  • 安装过程简单
  • 高性能使用Python和R语言
  • 免费的社区支持

其特点的实现主要基于Anaconda拥有的:

  • conda包
  • 环境管理器
  • 1000+开源库

如果日常工作或学习并不必要使用1000多个库,那么可以考虑安装Miniconda(官方网站),这里不过多介绍Miniconda的安装及使用。

1.3 Anaconda、conda、pip、virtualenv的区别

① Anaconda

Anaconda是一个包含180+的科学包及其依赖项的发行版本。其包含的科学包包括:conda, numpy, scipy, ipython notebook等。

② conda

conda是包及其依赖项和环境的管理工具。

  • 适用语言:Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN。

  • 适用平台:Windows, macOS, Linux

  • 用途:

    ① 快速安装、运行和升级包及其依赖项。

    ② 在计算机中便捷地创建、保存、加载和切换环境。

  • conda为Python项目而创造,但可适用于上述的多种语言。

  • conda包和环境管理器包含于Anaconda的所有版本当中。

③ pip

pip是用于安装和管理软件包的包管理器。

  • pip编写语言:Python。

  • Python中默认安装的版本:

    ① Python 2.7.9及后续版本:默认安装,命令为 pip

    ② Python 3.4及后续版本:默认安装,命令为 pip3

  • pip名称的由来:pip采用的是递归缩写进行命名的。其名字被普遍认为来源于2处:

    ① “Pip installs Packages”(“pip安装包”)

    ② “Pip installs Python”(“pip安装Python”)

④ virtualenv

virtualenv 是用于创建一个**独立的 ** Python 环境的工具。

  • 解决问题:

    ① 当一个程序需要使用 Python 2.7 版本,而另一个程序需要使用 Python 3.6版本,如何同时使用这两个程序?如果将所有程序都安装在系统下的默认路径,如:/usr/lib/python2.7/site-packages,当不小心升级了本不该升级的程序时,将会对其他的程序造成影响。

    ② 如果想要安装程序并在程序运行时对其库或库的版本进行修改,都会导致程序的中断。

    ③ 在共享主机时,无法在全局 site-packages 目录中安装包。

  • virtualenv将会为它自己的安装目录创建一个环境,这并不与其他virtualenv环境共享库;同时也可以选择性地不连接已安装的全局库。

⑤ pip 与 conda 比较

pipconda
依赖项检查不一定会展示所需其他依赖包。
② 安装包时或许会直接忽略依赖项而安装,仅在结果中提示错误。
① 列出所需其他依赖包。
② 安装包时自动安装其依赖项。
③ 可以便捷地在包的不同版本中自由切换。
环境管理维护多个环境难度较大。比较方便地在不同环境之间进行切换,环境管理较为简单。
对系统自带Python的影响在系统自带Python中包的更新/回退版本/卸载将影响其他程序。不会影响系统自带Python。
适用语言仅适用于Python。适用于Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, FORTRAN。

⑥ conda与pip、virtualenv的关系

conda结合pipvirtualenv 的功能。

二、为什么使用Anaconda

1、Anaconda 和 Jupyter notebook已成为数据分析的标准环境, Anaconda 包含了 Python 解释器和 Jupyter Notebook 编辑器,可以直接上手学习。

2、Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统,提供了包管理与环境管理的功能,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。

3、Anaconda利用工具/命令conda来进行package和environment的管理,并且已经包含了Python和相关的配套工具。

4、Anaconda 对于 Python 初学者而言及其友好,Anaconda 里添加了许多常用的功能包,使用 Anaconda 会比单独安装 Python 方便许多。

5、Anaconda是一个打包的集合,里面包含了720多个数据科学相关的开源包,在数据可视化、机器学习、深度学习等多方面都有涉及。不仅可以做数据分析,还可以用在大数据和人工智能等领域。安装它后就默认安装了python、IPython、Jupyter notebook和集成开发环境 Spyder等等。

三、安装步骤

Anaconda 是跨平台的,支持 Windows、macOS、Linux 版本,以下以 Windows 版本为例。

3.1 下载安装

1、前往官方下载浙大镜像源Anaconda(推荐,下载速度快)下载。有两个版本可供选择:Python 3和 Python 2,选择版本之后根据自己操作系统的情况点击64位或32位进行下载。我这里选择的版本是 Anaconda3-2022.10-Windows-x86_64.exe

2、完成下载之后,双击下载文件,启动安装程序。

3、 选择“Next”。

4、阅读许可证协议条款,然后勾选“I Agree”并进行下一步。

5、除非是以管理员身份为所有用户安装,否则仅勾选“Just Me”并点击“Next”。

image-20230725091246230

6、在“Choose Install Location”界面中选择安装Anaconda的目标路径,然后点击“Next”。

注意:① 目标路径中不能含有空格,同时不能是**“unicode”**编码。② 除非被要求以管理员权限安装,否则不要以管理员身份安装。

7、在“Advanced Installation Options”中不要勾选“Add Anaconda to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。因为如果勾选,则将会影响其他程序的使用。如果使用Anaconda,则通过打开Anaconda Navigator或者在开始菜单中的“Anaconda Prompt”(类似macOS中的“终端”)中进行使用。

除非你打算使用多个版本的Anaconda或者多个版本的Python,否则便勾选“Register Anaconda as my default Python 3.9”。

然后点击“Install”开始安装。如果想要查看安装细节,则可以点击“Show Details”。

8、点击“Next”。

9、进入“Thanks for installing Anaconda!”界面则意味着安装成功,点击“Finish”完成安装。

  • 注意:如果你不想了解“Anaconda云”和“Anaconda支持”,则可以不勾选“Learn more about Anaconda Cloud”和“Learn more about Anaconda Support”。

10、配置环境变量

① 定位安装目录,例如:D:\PF\Anaconda3

② 点击我的电脑->右击属性->高级系统设置->环境变量或在底部搜索栏输入”环境变量“,点击编辑系统环境变量

③ 创建系统环境变量

ANACONDA_HOME,变量值:D:\PF\Anaconda3

image-20230612140511311

④ 点击Path变量,增加变量值

%ANACONDA_HOME%
%ANACONDA_HOME%\Scripts
%ANACONDA_HOME%\Library\bin
%ANACONDA_HOME%\mingw-w64\bin

image

最后点击保存即可。

⑤ 检查

win+R,输入cmd,调出doc命令窗口,输入 conda list ,可以查看已经安装的包名和版本号。若结果可以正常显示,则说明安装成功。

3.2 配置conda源

这一步非常重要!因为 Anaconda默认源服务器在国外,如果不配置我们国内源的话,下载速度会慢到你怀疑人生的。而且很多时候会导致网络错误而下载失败。

1、配置方法一:

  • 打开 Anaconda Prompt ,执行以下命令,将清华镜像配置添加到Anaconda中。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
  • 然后我们输入conda info命令查看当前的channel,查看是否配置成功。
conda info
  • 检查是否安装成功

2、配置方法二(推荐):

打开下图中的 Anaconda Prompt程序: 执行: conda config --set show_channel_urls yes

image-20230612141033286

然后用记事本打开:C:\Users\用户名\.condarc文件,将如下内容替换进文件内,保存即可:

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

四、结语

这篇文章主要讲解了 Anaconda 的安装和配置,是作者的 【数据分析专栏之Python篇】的第一篇文章,以此开头,和大家一起学习。

五、附录

conda常用命令

命令解释
conda --versionconda 版本号
conda update conda更新conda至最新版本
conda --help/conda --h查看conda帮助信息
conda create --name <env_name> <package_names>创建新环境,其中**<env_name>** 即创建的环境名,<package_names> 即安装在环境中的包名。如: conda create --name python2 python=2.7
activate <env_name>切换环境
deactivate退出环境至root
conda info --envs/conda info -e/conda env list显示已创建环境
conda create --name <new_env_name> --clone <copied_env_name>复制环境
conda remove --name <env_name> --all删除环境
conda search --full-name <package_full_name>查找可供安装的包版本,其中**–full-name** 为精确查找的参数
conda list获取当前环境中已安装的包信息
conda install --name <env_name> <package_name>安装包,例如: conda install --name python2 pandas 即在名为“python2”的环境中安装pandas包。
conda install <package_name>在当前环境中安装包
conda remove --name <env_name> <package_name>卸载指定环境中的包
conda remove <package_name>卸载当前环境中的包
conda update --all/conda update <package_name>更新所有包或更新指定包

六、参考

【数据分析 - 基础入门之NumPy①】Anaconda安装及使用

Anaconda介绍、安装及使用教程

浙大镜像源Anaconda

清华大学开源软件镜像站Anaconda

浙江镜像源

Anaconda安装及配置(详细版)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yiluohan0307

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值