题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=625&page=show_problem&problem=4500
题意:给N个点 求出组成的最小三角形面积和最大三角形面积
详细题解:这丫的题目坑了我一个月,然后A了之后觉得自己的方法完全是个错的0.0
一开始的想法是:最大三角形面积很简单就是用凸包+旋转卡壳 ,最小三角形面积就是将每一个点极角排序。 然后求极点和每个相邻的两点组成的三角形的面积 之后发现这样有问题 如果这两边的夹角很大 但是长度很短 还是可能会面积最小 。 所以又想到以每个点为顶点,和其余点的用长度来排了下序,然后以长度的顺序来组成三角形之后发现这样测完所有数据要50s+
之后左搞右搞,发现原来极角排序写错了,干脆就删除了极角排序,然后发现还是超时30s+
然后无奈的乱改,把边排序的叉积的方法去掉,改为直接公式计算就9s了, 不曾想这竟然过了……
感觉完全就是逻辑错误,贴上代码,大家有什么正解的话,求在下面留言指教。。。。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 2100
#define inf 0x7fffffff
const double eps = 1e-8;
int dcmp(double x)
{
if(fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
struct Point
{
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
};
Point p[N];
Point pp[N];
Point ch[N];
typedef Point Vector;
Vector operator - (Point A, Point B) {return Vector(A.x-B.x, A.y-B.y);}
bool operator == (const Point &a, const Point &b){return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;}
bool operator != (const Point &a, const Point &b){return dcmp(a.x-b.x) != 0 || dcmp(a.y-b.y) != 0;}
double Dot(Vector A, Vector B){return A.x*B.x + A.y*B.y;}
double Length(Vector A){return sqrt(Dot(A, A));}
double Cross(Vector A, Vector B){return A.x*B.y - A.y*B.x;}
double Area2(Point A, Point B, Point C){return fabs(Cross(B-A, C-A));}
Point tmp;
bool cmp_bian(Point a, Point b)
{
double lena = (a.x-tmp.x)*(a.x-tmp.x)+(a.y-tmp.y)*(a.y-tmp.y);
double lenb = (b.x-tmp.x)*(b.x-tmp.x)+(b.y-tmp.y)*(b.y-tmp.y);
return dcmp(lena - lenb)< 0;
//return Length(a - tmp) < Length(b-tmp);
}
bool cmp ( Point a, Point b )
{
if ( a.x != b.x ) return a.x < b.x;
else return a.y < b.y;
}
//凸包
int ConvexHull(Point *p, int n, Point * ch)
{
sort(p, p+n, cmp);
int m = 0;
for(int i = 0; i < n; i++)
{
while(m > 1 && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--;
ch[m++] = p[i];
}
int k = m;
for(int i = n-2; i >= 0; i--)
{
while(m > k && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--;
ch[m++] = p[i];
}
if(n > 1) m--;
return m;
}
//旋转卡壳求最大三角形面积
double rotaing_calipers(Point ch[], int n)
{
int p;
int i, j;
double ans = 0;
for( i = 0; i < n-1; i++)
{
p = 1;
for( j = i+1; j < n; j++)
{
while(fabs(Cross(ch[j]-ch[i],ch[p+1]-ch[i])) > fabs((Cross(ch[j]-ch[i],ch[p]-ch[i]))))
p = (p+1) % (n-1);
ans = max(ans, fabs(Cross(ch[i]-ch[p],ch[j]-ch[p])));
}
ans = max(ans, fabs(Cross(ch[i]-ch[p],ch[j]-ch[p])));
}
return ans/2;
}
int main ()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d", &n),n)
{
for(int i = 0; i < n; i++)
{
scanf("%lf %lf", &p[i].x, &p[i].y);
pp[i].x = p[i].x;
pp[i].y = p[i].y;
}
double Min = inf, Max = -1;
for(int i = 0; i < n; i++)
{
tmp.x = p[i].x, tmp.y = p[i].y;
double temp ;
for(int j = 0; j < n; j++)
{
if(p[i] == pp[j]) continue;
if(pp[j+1] != p[i] && j+1 < n)
temp = Area2(p[i], pp[j], pp[j+1])/2;
else if(pp[j+1] == p[i] && j+2 < n)
temp = Area2(p[i], pp[j], pp[j+2])/2;
Min = min(Min, temp);
if(Min == 0) break;
}
sort(pp, pp+n, cmp_bian);
for(int j = 1; j < n-1; j++)
{
temp = Area2(p[i],pp[j],pp[j+1])/2;
Min = min(Min, temp);
}
if(Min == 0) break;
}
int len = ConvexHull(p, n, ch);
Max = rotaing_calipers(ch, len);
printf("%.1lf %.1lf\n", Min, Max);
}
return 0;
}