提示:本文是《数学思维导论-学会像数学家一样思考》的读书笔记。
引言:自然语言和数学语言的不同
在我们的日常生活中,语言是人与人的交流的基本工具。语言以文字和语音的形式将信息传递给他人。考虑到信息传递者在传播信息过程中面对复杂的环境、多样的受众和人为不确定性因素等情况,自然语言不一定能很精确地表达信息的真正含义。例如:“七月到八月是一年最热的季节。”这句话常常挂于北半球的居民嘴边,但是将这句话说给南半球的居民听,他们会不认同这个陈述。
数学学科是利用数学的理论、方法、形式和工具对客观世界进行定量描述的学科。正如伽利略所说,“只有那些懂得自然是用什么语言书写的人,才能读懂自然这本巨著,而这种语言就是数学”1。 既然是自然的语言,那么数学必须十分精确地反应自然世界。这给数学的研究、应用和发展带来了巨大的挑战。数学概念必须精确、数学表达式必须规范、数学原理必须无歧义。 数学语言不同于自然语言,它不会也不能考虑信息接受者的背景(例如,他们来自南半球还是北半球)、上下文的语境。通过上述分析,我们或许认为构建数学学科是一个费时费力的大工程。但幸运的是,用数学语言表示的陈述语句仅限于几种基本形式及其演绎式。在下文中,将举例说明自然语言的不精确性,同事对数学陈述的特点进行分析。
自然语言的不精确性
几个例子
语言不精确,会带来表达上的歧义。所谓歧义,指句子存在某种(或几种)语病,使得对其有几种不同的解释或理解,让读者很伤脑筋,不知道作者究竟想表达什么意思2。
-
One American dies of melanoma almost every hour. 一个美国人几乎每小时死于黑素瘤。
这个句子表达有误。作者真正想说明的是“几乎每个小时,都有一个美国人死于黑色瘤。”句子应该改为“Almost every hour, one American dies of melanoma.”
-
Sisters reunited after ten years in checkout line at Safeway.
这个句子表达有误。作者真正想说明的是“姐妹们在Safeway的结账台排了十年的队后重逢了。”句子应该改为“After ten years, sisters reunited in checkout line at Safeway,.”
-
把两个凸台的平面抛光后即可进行组装。
这个句子表达有误。作者真正想说明的是“把凸台上的两个平面抛光后即可进行组装。”
-
研究方法十分重要。
这个句子表达有误。作者真正想说明的是“研究方法/十分重要。”而不是“研究某种方法十分重要。”句子应该改为“如何选择研究方法十分重要。”
数学语言的精确性
数学陈述的范式
-
对象a具有性质P。
例: 2 \sqrt{2} 2是无理数。对象是 2 \sqrt{2} 2,它具有无理数的性质。
-
每个T类对象都具有性质P。
例:对每个实数a,方程 x 2 + a = 0 x^{2}+a=0 x2+a=0 都有一个实根。 对象是a,类是实数,a具有性质“它是方程 x 2 + a = 0 x^{2}+a=0 x2+a=0的根。”
例:存在无穷多个素数。对象是单个素数,类是素数总体,每个对象都具有素数的性质。
-
存在一个具有性质P的T类对象。
例:25和30之间有一个素数。对象是某个素数,类是素数总体,这个对象具有素数的性质。
-
若陈述A,则陈述B。
例:若 p p p为形如 4 n + 1 4n+1 4n+1的素数,则 p p p是两个平方数的和。陈述A 为“ p p p为形如 4 n + 1 4n+1 4n+1的素数”,陈述B为“ p p p是两个平方数的和”。
数学陈述的否定范式
-
对象a不具有性质P。
例:10不是素数。对象是10,它不具有素数的性质。
-
并不是每个T类对象都具有性质P。
例:并不是每个多项式方程3都有实数根。对象是某个多项式方程,类是多项式方程,这个对象具有性质“有实数根”。
-
不存在任何一个具有性质P的T类对象。
不存在任何一个大于2的素数是偶数。对象是大于2的素数,类是素数,这个对象具有性质“是偶数”。
-
若不是陈述A,则不是陈述B。
若a不是实数,则a+1不是实数。陈述A为“若a不是实数”,陈述B为“a+1不是实数”。
数学陈述的符号化
-
存在无穷多个素数。
带有符号的数学陈述: ∃ ∞ \exist \infty ∃∞个素数。
-
对每个实数a,方程 x 2 + a = 0 x^{2}+a=0 x2+a=0 都有一个实根。
带有符号的数学陈述: ∀ \forall ∀实数a,Eq. x 2 + a = 0 x^{2}+a=0 x2+a=0 ∃ \exists ∃一个实根。
-
2 \sqrt{2} 2是无理数。
带有符号的数学陈述: 2 \sqrt{2} 2是无理数。
-
若 p ( n ) p(n) p(n)表示小于等于自然数 n n n的素数个数,则当n变得非常大时, p ( n ) p(n) p(n)趋于 n l o g e n \displaystyle\frac{n}{log_{e}{n}} logenn。
带有符号的数学陈述:若 p ( n ) ⩽ p(n)\leqslant p(n)⩽自然数n的素数个数,则当 n → ∞ n\rightarrow \infty n→∞时, p ( n ) → n l o g e n p(n)\rightarrow\displaystyle\frac{n}{log_{e}{n}} p(n)→logenn
数学陈述的证明