预训练模型transformers综合总结(二)

接着第一部分,这里写如何使用自定义数据集,调用transformers库去训练模型,其实感觉本质就是如何把数据集合理读取进来。

文本分类

使用aclImdb数据集,我比较倾向于直接用list把文本给读取进来

(一)数据准备

#数据读取
from pathlib import Path

def read_imdb_split(split_dir):
    split_dir = Path(split_dir)
    texts = []
    labels = []
    for label_dir in ["pos", "neg"]:
        for text_file in (split_dir/label_dir).iterdir():
            texts.append(text_file.read_text())
            labels.append(0 if label_dir is "neg" else 1)

    return texts, labels

train_texts, train_labels = read_imdb_split('aclImdb/train')
test_texts, test_labels = read_imdb_split('aclImdb/test')
#数据处理
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)

##分词
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
##文本向量化
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)

(二)管道搭建

1.使用pytorch的方式实现

import torch

class IMDbDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)

train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)

2.使用tensorflow的方式实现

import tensorflow as tf

train_dataset = tf.data.Dataset.from_tensor_slices((
    dict(train_encodings),
    train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
    dict(val_encodings),
    val_labels
))
test_dataset = tf.data.Dataset.from_tensor_slices((
    dict(test_encodings),
    test_labels
))

(三)训练模式

1.使用自带训练函数训练

(1)使用pytorch的方式实现

model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

model = DistilBertForSequenceClassification.from_pretrained(model_path)

trainer = Trainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

(2)使用tensorflow的方式实现

from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
model_path="H:\\code\\Model\\distilbert-base-cased\\"

training_args = TFTrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

with training_args.strategy.scope():
    model = TFDistilBertForSequenceClassification.from_pretrained(model_path)

trainer = TFTrainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

2.使用原生框架训练

(1)使用pytorch的方式实现

from torch.utils.data import DataLoader
from transformers import DistilBertForSequenceClassification, AdamW

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = DistilBertForSequenceClassification.from_pretrained(model_path)
model.to(device)
model.train()

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

optim = AdamW(model.parameters(), lr=5e-5)

for epoch in range(3):
    for batch in train_loader:
        optim.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs[0]
        loss.backward()
        optim.step()

model.eval()

(2)使用tensorflow的方式实现

from transformers import TFDistilBertForSequenceClassification

model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = TFDistilBertForSequenceClassification.from_pretrained(model_path)

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)

命名实体识别

使用wnut17数据集

(一)数据准备

#数据读取
from pathlib import Path
import re

def read_wnut(file_path):
    file_path = Path(file_path)

    raw_text = file_path.read_text().strip()
    raw_docs = re.split(r'\n\t?\n', raw_text)
    token_docs = []
    tag_docs = []
    for doc in raw_docs:
        tokens = []
        tags = []
        for line in doc.split('\n'):
            token, tag = line.split('\t')
            tokens.append(token)
            tags.append(tag)
        token_docs.append(tokens)
        tag_docs.append(tags)

    return token_docs, tag_docs

texts, tags = read_wnut('wnut17train.conll')
#数据分割
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_tags, val_tags = train_test_split(texts, tags, test_size=.2)

#数据处理
##字典和数字互相转化
unique_tags = set(tag for doc in tags for tag in doc)
tag2id = {tag: id for id, tag in enumerate(unique_tags)}
id2tag = {id: tag for tag, id in tag2id.items()}
##分词
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-cased')
train_encodings = tokenizer(train_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
val_encodings = tokenizer(val_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
##文本向量化
import numpy as np

def encode_tags(tags, encodings):
    labels = [[tag2id[tag] for tag in doc] for doc in tags]
    encoded_labels = []
    for doc_labels, doc_offset in zip(labels, encodings.offset_mapping):
        # create an empty array of -100
        doc_enc_labels = np.ones(len(doc_offset),dtype=int) * -100
        arr_offset = np.array(doc_offset)

        # set labels whose first offset position is 0 and the second is not 0
        doc_enc_labels[(arr_offset[:,0] == 0) & (arr_offset[:,1] != 0)] = doc_labels
        encoded_labels.append(doc_enc_labels.tolist())

    return encoded_labels

train_labels = encode_tags(train_tags, train_encodings)
val_labels = encode_tags(val_tags, val_encodings)

(二)管道搭建

1.使用pytorch的方式实现

import torch

class WNUTDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)

train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")
train_dataset = WNUTDataset(train_encodings, train_labels)
val_dataset = WNUTDataset(val_encodings, val_labels)

2.使用tensorflow的方式实现

import tensorflow as tf

train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")

train_dataset = tf.data.Dataset.from_tensor_slices((
    dict(train_encodings),
    train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
    dict(val_encodings),
    val_labels
))

(三)训练模式

1.使用自带训练函数训练

(1)使用pytorch的方式实现

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertForTokenClassification
model = DistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))

trainer = Trainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

(2)使用tensorflow的方式实现

model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import TFTrainer, TFTrainingArguments
from transformers import TFDistilBertForTokenClassification


training_args = TFTrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

with training_args.strategy.scope():
   model = TFDistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))

trainer = TFTrainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

2.使用原生框架训练

(1)使用pytorch的方式实现

from torch.utils.data import DataLoader
from transformers import  AdamW
from transformers import DistilBertForTokenClassification


device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

model_path="H:\\code\\Model\\distilbert-base-cased\\"

model = DistilBertForTokenClassification.from_pretrained(model_path,num_labels=len(unique_tags))

model.to(device)
model.train()

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

optim = AdamW(model.parameters(), lr=5e-5)

for epoch in range(3):
    for batch in train_loader:
        optim.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs[0]
        loss.backward()
        optim.step()

model.eval()

(2)使用tensorflow的方式实现

from transformers import TFDistilBertForTokenClassification

model_path="H:\\code\\Model\\distilbert-base-cased\\"

model = TFDistilBertForTokenClassification.from_pretrained(model_path, num_labels=len(unique_tags))


optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)

问答

(一)数据准备

使用SQuAD 2.0数据集

#数据读取
import json
from pathlib import Path

def read_squad(path):
    path = Path(path)
    with open(path, 'rb') as f:
        squad_dict = json.load(f)

    contexts = []
    questions = []
    answers = []
    for group in squad_dict['data']:
        for passage in group['paragraphs']:
            context = passage['context']
            for qa in passage['qas']:
                question = qa['question']
                for answer in qa['answers']:
                    contexts.append(context)
                    questions.append(question)
                    answers.append(answer)

    return contexts, questions, answers

train_contexts, train_questions, train_answers = read_squad('squad/train-v2.0.json')
val_contexts, val_questions, val_answers = read_squad('squad/dev-v2.0.json')


#数据处理
def add_end_idx(answers, contexts):
    for answer, context in zip(answers, contexts):
        gold_text = answer['text']
        start_idx = answer['answer_start']
        end_idx = start_idx + len(gold_text)

        # sometimes squad answers are off by a character or two – fix this
        if context[start_idx:end_idx] == gold_text:
            answer['answer_end'] = end_idx
        elif context[start_idx-1:end_idx-1] == gold_text:
            answer['answer_start'] = start_idx - 1
            answer['answer_end'] = end_idx - 1     # When the gold label is off by one character
        elif context[start_idx-2:end_idx-2] == gold_text:
            answer['answer_start'] = start_idx - 2
            answer['answer_end'] = end_idx - 2     # When the gold label is off by two characters

add_end_idx(train_answers, train_contexts)
add_end_idx(val_answers, val_contexts)

#数据管道搭建
## 文本向量化
model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained(model_path)

train_encodings = tokenizer(train_contexts, train_questions, truncation=True, padding=True)
val_encodings = tokenizer(val_contexts, val_questions, truncation=True, padding=True)


def add_token_positions(encodings, answers):
    start_positions = []
    end_positions = []
    for i in range(len(answers)):
        start_positions.append(encodings.char_to_token(i, answers[i]['answer_start']))
        end_positions.append(encodings.char_to_token(i, answers[i]['answer_end']))

        # if start position is None, the answer passage has been truncated
        if start_positions[-1] is None:
            start_positions[-1] = tokenizer.model_max_length

        # if end position is None, the 'char_to_token' function points to the space before the correct token - > add + 1
        if end_positions[-1] is None:
            end_positions[-1] = encodings.char_to_token(i, answers[i]['answer_end'] + 1)
    encodings.update({'start_positions': start_positions, 'end_positions': end_positions})

add_token_positions(train_encodings, train_answers)
add_token_positions(val_encodings, val_answers)

(二)管道搭建

1.使用pytorch的方式实现

import torch

class SquadDataset(torch.utils.data.Dataset):
    def __init__(self, encodings):
        self.encodings = encodings

    def __getitem__(self, idx):
        return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}

    def __len__(self):
        return len(self.encodings.input_ids)

train_dataset = SquadDataset(train_encodings)
val_dataset = SquadDataset(val_encodings)

2.使用tensorflow的方式实现

import tensorflow as tf

train_dataset = tf.data.Dataset.from_tensor_slices((
    {key: train_encodings[key] for key in ['input_ids', 'attention_mask']},
    {key: train_encodings[key] for key in ['start_positions', 'end_positions']}
))
val_dataset = tf.data.Dataset.from_tensor_slices((
    {key: val_encodings[key] for key in ['input_ids', 'attention_mask']},
    {key: val_encodings[key] for key in ['start_positions', 'end_positions']}
))

(三)训练模式

1.使用自带训练函数训练

(1)使用pytorch的方式实现

from transformers import Trainer, TrainingArguments

model_path="H:\\code\\Model\\distilbert-base-cased\\"
training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

model = DistilBertForQuestionAnswering.from_pretrained(model_path)

trainer = Trainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

(2)使用tensorflow的方式实现

from transformers import TFTrainer, TFTrainingArguments
model_path="H:\\code\\Model\\distilbert-base-cased\\"

training_args = TFTrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

with training_args.strategy.scope():
    from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments

training_args = TFTrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

with training_args.strategy.scope():
    model = TFDistilBertForSequenceClassification.from_pretrained(model_path)

trainer = TFTrainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

trainer = TFTrainer(
    model=model,                         # the instantiated 🤗 Transformers model to be trained
    args=training_args,                  # training arguments, defined above
    train_dataset=train_dataset,         # training dataset
    eval_dataset=val_dataset             # evaluation dataset
)

trainer.train()

2.使用原生框架训练

(1)使用pytorch的方式实现

from transformers import DistilBertForQuestionAnswering
model_path="H:\\code\\Model\\distilbert-base-cased\\"
model = DistilBertForQuestionAnswering.from_pretrained(model_path)
from torch.utils.data import DataLoader
from transformers import AdamW

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

model.to(device)
model.train()

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)

optim = AdamW(model.parameters(), lr=5e-5)

for epoch in range(3):
    for batch in train_loader:
        optim.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        start_positions = batch['start_positions'].to(device)
        end_positions = batch['end_positions'].to(device)
        outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
        loss = outputs[0]
        loss.backward()
        optim.step()

model.eval()

(2)使用tensorflow的方式实现

model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import TFDistilBertForQuestionAnswering
model = TFDistilBertForQuestionAnswering.from_pretrained(model_path)

# Keras will expect a tuple when dealing with labels
train_dataset = train_dataset.map(lambda x, y: (x, (y['start_positions'], y['end_positions'])))

# Keras will assign a separate loss for each output and add them together. So we'll just use the standard CE loss
# instead of using the built-in model.compute_loss, which expects a dict of outputs and averages the two terms.
# Note that this means the loss will be 2x of when using TFTrainer since we're adding instead of averaging them.
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.distilbert.return_dict = False # if using 🤗 Transformers >3.02, make sure outputs are tuples

optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南楚巫妖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值