线性回归模型

线性回归模型

一、线性回归的基本假设
1.线性性和可加性

假设因变量为Y,自变量为X1,X2,则回归分析的默认假设为Y=b+a1X1+a2X2+ε。
线性性:X1每变动一个单位,Y相应变动a1个单位,与X1的绝对数值大小无关。
可加性:X1对Y的影响是独立于其他自变量(如X2)的。

2.误差项(ε)之间应相互独立。

若不满足这一特性,我们称模型具有自相关性(Autocorrelation)。

3.自变量(X1,X2)之间应相互独立。

若不满足这一特性,我们称模型具有多重共线性性(Multicollinearity)。
检查多重共线性,采用方差膨胀系数(VIF–Variance Inflation Factor),若VIF<3,说明该变量基本不存在多重共线性性问题,若VIF>10,说明问题比较严重。

4.误差项(ε)的方差应为常数。

若满足这一特性,我们称模型具有同方差性(Homoskedasticity),若不满足,则为异方差性(Heteroskedasticity)。

5.误差项(ε)应呈正态分布。
二、一元线性回归模型
  1. 一元线性回归模型:
    y=w0+w1x

  2. 多元线性回归问题(multiple linear regression):
    线性约束由多个解释变量构成:
    y=w0+w1x1+w2x2+…+wnxn

  3. 项式回归分析(polynomial regression问题):
    一种具有非线性关系的多元线性回归问题
    y=w0+w1x1+w2x22+…+wnxnn

三、回归模型的损失函数

回归问题的损失函数为均方误差(Mean Squared Error),目标函数如下形式:在这里插入图片描述
目标函数 J(θ01) 描述了所有训练样本实际值与预测值之间的均方误差,而我们的目的就是求解能够使得该误差 J(θ01) 值最小的参数 θ01

四、目标函数参数求解

两种方式求解:(1)最小二乘法(2)梯度下降法
梯度下降是通过迭代的方法求解参数 θ ,而最小二乘法,或者叫正规方程,是解析地求解参数 θ。

对于一元线性回归;
在这里插入图片描述

  1. 最小二乘法
  • 对于模型函数: h(x)=X⋅Θ
  • 最小二乘法求解参数:Θ=(XTX)−1XTy
    矩阵的逆运算算法复杂度为 O(n3) ,当特征数很大时,计算非常耗时。
  1. 梯度下降法
    其梯度为:
    在这里插入图片描述
    注:梯度为一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值。
     于是对于一元线性回归,梯度下降算法过程为:
       repeat {         θ0:=θ0−α1m∑mi=1(hθ(x(i))−y(i))         θ1:=θ1−α1m∑mi=1(hθ(x(i))−y(i))⋅x(i)   }

重复以上过程直到收敛,或达到最大迭代次数。
   收敛判断条件为:
∣J(θ(k)0,θ(k)1)−J(θ(k−1)0,θ(k−1)1)∣<ϵ

其中 ϵ 为阈值 ,当第 k 次所求代价值,与第 k−1 代价值相差小于阈值时,可视为函数收敛到最优解附近。此时的 θ(k)0(k)1 即为所求参数。
  以上便是梯度下降算法的整个过程。

  1. 以上两种方法的比较
       梯度下降法:(1)需要选择学习率 α (2)需要迭代 (3)即使特征数 n 很大也能很好地工作。
       最小二乘法:(1)不需要选择学习率 α (2)不需要迭代 (3)需要计算矩阵的逆,当特征数 n 很大时,计算速度很慢。

参考:
1.https://blog.csdn.net/yingfengfeixiang/article/details/107965163
2.https://www.cnblogs.com/lliuye/p/9120839.html
3.https://blog.csdn.net/HHG20171226/article/details/102692044

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值