深入理解逻辑回归(logisitc regression)

逻辑回归(logisitc regression)

1.逻辑分布

定义:连续变量X服从逻辑分布,分布函数表示为:

F(x)=11+e(θTx+b)(1) F ( x ) = 1 1 + e − ( θ T x + b ) ( 1 )

分布函数图形为S形曲线,即为Sigmoid Logistic Function,表示为下图:
这里写图片描述
在实际应用中,F(X)函数表示为
F(x)=11+eθTx(2) F ( x ) = 1 1 + e − θ T x ( 2 )

2.逻辑回归模型概念

a.假设有模型 P(Y=1|x)=F(x)=11+eθTx P ( Y = 1 | x ) = F ( x ) = 1 1 + e − θ T x 在已知输入x的情况下,判断此输入为1类的概率是多少。
b.而在此概率模型中,若想求得概率P,只有参数 θT θ T 不知道。
c.如何求得参数 θT θ T ,就需要估计参数值。参数估计方法则采用在模型已知,参数未知的情况下的极大似然估计。
d.若采用极大似然估计方法来估计参数,那么就需要给出似然函数。在整个模型训练中,似然函数如何表示?问题转化成如何表达极大似然估计函数

3.极大似然估计

(1)训练样本
假设我们有5个训练样本,样本集为
{(x1,y1=1),(x2,y2=0),(x3,y3=1),(x4,y4=0),(x5,y5=1)} { ( x 1 , y 1 = 1 ) , ( x 2 , y 2 = 0 ) , ( x 3 , y 3 = 1 ) , ( x 4 , y 4 = 0 ) , ( x 5 , y 5 = 1 ) }
则要满足5个样本的总的分布概率,有:
P=P(Y=1|x=x1)P(Y=0|x=x2)P(Y=1|x=x3)P(Y=0|x=x4)P(Y=1|x=x5) P = P ( Y = 1 | x = x 1 ) P ( Y = 0 | x = x 2 ) P ( Y = 1 | x = x 3 ) P ( Y = 0 | x = x 4 ) P ( Y = 1 | x = x 5 )
要计算P的值,从而确定极大似然函数。
(2)极大似然函数
a.极大似然估计求解步骤:

  • 写出似然函数;
  • 对似然函数求log
  • 对log函数求导数
  • 令导数等于0,求参数

b.设逻辑回归模型:

P(Y=1|x)=hθ(x) P ( Y = 1 | x ) = h θ ( x )

P(Y=0|x)=1hθ(x) P ( Y = 0 | x ) = 1 − h θ ( x )

则似然函数表示为:
L(θ)=i=1m[(hθ(xi)]yi[1hθ(xi)]1yi(3) L ( θ ) = ∏ i = 1 m [ ( h θ ( x i ) ] y i [ 1 − h θ ( x i ) ] 1 − y i ( 3 )

对数似然函数为:
l(θ)=log(L(θ))=i=1m(yilog(hθ(xi)+(1yi)log(1hθ(xi)))(4) l ( θ ) = log ⁡ ( L ( θ ) ) = ∑ i = 1 m ( y i log ⁡ ( h θ ( x i ) + ( 1 − y i ) log ⁡ ( 1 − h θ ( x i ) ) ) ( 4 )

即要求得 l(θ) l ( θ ) 取得最大值时的θ的值。 问题转换成对极大似然函数的最优化问题。

4.代价函数与损失函数

代价函数 cost() c o s t ( ) 可以用对数似然函数公式(4)表示。
代价函数是用来寻找最优解的目标函数。
令代价函数 cost() c o s t ( ) 和损失函数 J(θ) J ( θ ) 表示为:
这里写图片描述
可以看出损失函数:

J(θ)=1ml(θ) J ( θ ) = − 1 m l ( θ )

问题转换为使得损失函数最小时的参数θ的值。求损失函数极小值,采用梯度下降方法。
为了推导公式简单,在梯度下降求解之前,我们先介绍对数几率(log odds)或lofit函数

5.对数几率(log odds)

逻辑回归模型如下:

P(Y=1|x)=eθTx1+eθTx5 P ( Y = 1 | x ) = e θ T x 1 + e θ T x ( 5 )

P(Y=0|x)=11+eθTx6 P ( Y = 0 | x ) = 1 1 + e θ T x ( 6 )

几率定义:一个事件的几率(odds)是指该事件发生的概率p与该事件不发生的概率1-p的比值 p1p p 1 − p .
对数几率即对几率求对数 logit(p)=logp1p l o g i t ( p ) = log ⁡ p 1 − p .
由公式(5)、(6)得
logP(Y=1|x)1P(Y=1|x)=θTx l o g P ( Y = 1 | x ) 1 − P ( Y = 1 | x ) = θ T x

对数几率将在下面的推导中用到

6.梯度下降

由第4部分,得到损失函数 J(θ) J ( θ )

J(θ)=1mi=1m[yilog(hθ(xi)+(1yi)log(1hθ(xi))] J ( θ ) = − 1 m ∑ i = 1 m [ y i log ⁡ ( h θ ( x i ) + ( 1 − y i ) log ⁡ ( 1 − h θ ( x i ) ) ]
=1mi=1m[yiloghθ(xi)1hθ(xi)+log(1hθ(xi))] = − 1 m ∑ i = 1 m [ y i l o g h θ ( x i ) 1 − h θ ( x i ) + l o g ( 1 − h θ ( x i ) ) ]
=1mi=1m[yi(θTxi)log(1+eθTxi)] = − 1 m ∑ i = 1 m [ y i ( θ T x i ) − l o g ( 1 + e θ T x i ) ]

梯度函数:
J(θ)θ=1mi=1m[yixi11+eθxieθxi xi] ∂ J ( θ ) ∂ θ = − 1 m ∑ i = 1 m [ y i x i − 1 1 + e θ x i e θ x i   x i ]
=1mi=1m(yihθ(xi))xi = − 1 m ∑ i = 1 m ( y i − h θ ( x i ) ) x i
=1mi=1m(hθ(xi)yi)xi = 1 m ∑ i = 1 m ( h θ ( x i ) − y i ) x i

梯度迭代:
Repeat{
θj:=θjαJ(θ)θj θ j := θ j − α ∂ J ( θ ) ∂ θ j

}
最终找到极小值,从而确定 θT θ T

7.LR如何处理过拟合问题?

1.什么是过拟合?
就是训练出的样本可以很好的适应所有的训练样本,但是不能对测试样本很好的预测,这就是过拟合。
2.解决过拟合的方法有两个:
(1)降维,使用PCA降维,使使得模型 θ θ 个数减少,次数也降低,避免了过拟合
(2)正则化。增加正则化项
对于LR添加L1正则项或者L2正则项。

L1正则化会导致参数值变为0,但是L2却只会使得参数值减小,这是因为L1的导数是固定的,参数值每次的改变量是固定的,而L2会由于自己变小改变量也变小。

8.多分类问题

多分类逻辑回归的模型为:

P(Y=k|x)=eθx1+K1k=1eθx,k=1,2,...,K1. P ( Y = k | x ) = e θ x 1 + ∑ k = 1 K − 1 e θ x , k = 1 , 2 , . . . , K − 1.

9.总结

  1. 梯度下降法实现简单,但是梯度下降求得最优解不一定是全局最优解,有可能是局部最优解,并且收敛速度不一定是最快的。
  2. 逻辑回归源于线性回归
    线性函数=逻辑回归模型中Y=1的对数几率。

参考:
http://blog.csdn.net/chibangyuxun/article/details/53148005逻辑回归原理及过程
http://blog.csdn.net/raintungl/article/details/78188182中3.1logistic回归的极大似然估计
http://blog.csdn.net/walilk/article/details/50978864的导数与梯度下降

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值