统计学习方法笔记---逻辑斯蒂回归

逻辑斯蒂回归

机器学习实战的代码详见:https://editor.csdn.net/md/?articleId=105162141
sklearn中的逻辑斯蒂回归详见:https://blog.csdn.net/leemusk/article/details/103111878

基本概念

几率(odds):一个事件发生的概率与时间不发生的概率的比值。
p 1 − p \frac p {1-p} 1pp
对数几率(log odds)
l o g p 1 − p log \frac p {1-p} log1pp

1 优缺点

优点:

  1. 计算代价不高
  2. 易于理解和实现

缺点:

  1. 容易欠拟合
  2. 分类精度可能不高

2 基本概念及结论推理

  1. 逻辑斯蒂回归模型属于对数线性模型

  2. 逻辑斯蒂回归是判别模型,返回的是一维向量,第i个值代表第i个类发生的条件概率值。比较条件概率值的大小,将实例分到概率值较大的那一类。

  3. 逻辑斯蒂回归模型是由以下条件概率分布表示的分类模型。逻辑斯蒂回归模型可以用于二分类问题或多分类问题。

    以下 x x x为输入特征, w w w为特征的权值。公式中的 w w w 包括 b b b ,将其作为 w 0 w_0 w0 , w i w_i wi表示预测该样本为第 i i i类的特征的权值,通过最优化方法获取。
    逻辑斯蒂回归模型源自逻辑斯蒂分布,其分布函数 F ( x ) F(x) F(x) S S S形函数。逻辑斯蒂回归模型是有输入的线性函数表示的输出的对数几率模型。

    二分类:
    P ( Y = 1 ∣ x ) = e x p ( w ⋅ x ) 1 + e x p ( w ⋅ x ) P ( Y = 0 ∣ x ) = 1 1 + e x p ( w ⋅ x ) P(Y = 1|x) = \frac {exp({w} \cdot {x})} {1+ exp({w} \cdot {x})} \\ P(Y = 0|x) = \frac 1 {1+ exp({w} \cdot {x})} P(Y=1x)=1+exp(wx)exp(wx)P(Y=0x)=1+exp(wx)1
    在二分类问题中,存在sigmoid激活函数: 1 1 + e x p ( − z ) \frac 1 {1 + exp(-z)} 1+exp(z)1
    在这里插入图片描述
    当z越接近于正无穷,函数值(预测值)h 越接近于1,当z越接近于负无穷,函数值(预测值)h 越接近于0; 在逻辑斯蒂回归算法中, z = w ⋅ x z = w \cdot x z=wx。给定某一个阈值 x(0~1),当h >= x时,输出1, 当h < x时,输出0。

    多分类:
    P ( Y = k ∣ x ) = e x p ( w k ⋅ x ) 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) , k = 1 , 2 , . . . K − 1 P ( Y = K ∣ x ) = 1 1 + ∑ k = 1 K − 1 e x p ( w k ⋅ x ) P(Y = k|x) = \frac {exp({w_k} \cdot {x})} {1+ \sum_{k=1}^{K-1} exp({w_k} \cdot {x})}, k=1,2,...K-1\\ P(Y = K| x) = \frac 1 {1+ \sum_{k=1}^{K-1} exp({w_k} \cdot {x})} P(Y=kx)=1+k=1K1exp(wkx)exp(wkx),k=1,2,...K1P(Y=Kx)=1+

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值