棋盘里的数字(dfs)

棋盘里的数学

发布时间: 2016年9月13日 20:39   最后更新: 2016年9月20日 12:04   时间限制: 1000ms   内存限制: 128M

lhcoder有一个n行m列的棋盘,有一颗棋子从左上角(1,1)开始移动,每次只能往右或者往下移动一格,到右下角(n,m)一共有多少移动方案?

有多组测试数据,每组测试数据中有两个整数n和m(2 <= n, m <= 1000),代表为n行m列的棋盘。

一个整数p,代表从左上角(1,1)移动到右下角(n,m)的方案数,由于方案数可能比较大,结果请对99991取模。

  复制
2 2
2
  复制
2 3
3

很简单的一道题却做错了,大概是因为超时吧,两种很有趣的解法:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int mod=99991;

int ans[1005][1005];

int n,m;

int dfs(int x,int y)
{
	if(ans[x][y])
	{
		return ans[x][y];
	}
	if(x==n&&y==m)
	{
		return 1;
	}
	long long ret=0;
	if(y+1<=m)
	{
		ret+=dfs(x,y+1);
		ret%=99991;
	}
	if(x+1<=n)
	{
		ret+=dfs(x+1,y);
		ret%=99991;
	}
	return ans[x][y]=ret;
}

int main()
{
    while(~scanf("%d %d",&n,&m))
    {
        memset(ans,0,sizeof(ans));
        printf("%d\n",dfs(1,1));
    }
    return 0;
}


#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

const int mod=99991;

int num[1005][1005];

void init()
{
	for(int i=1;i<=1000;i++)
	{
		num[1][i]=1;num[i][1]=1;
	}
	for(int i=2;i<=1000;i++)
	{
		for(int j=2;j<=1000;j++)
		{
			num[i][j]=(num[i][j-1]+num[i-1][j])%mod;
		}
	}
	return ;
}

int main()
{
	init();
	int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        cout << num[n][m] <<endl;
    }
    return 0;
}

简单的说就是很神奇的一些算法,他的灵活度还需自己慢慢体会(再一次感悟到了简单算法的博大精深,主要自己太菜 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值